[1]
R. Singh and H.K. Garg, Pattern development for Hand tool die with fused deposition modeling, LAP Lembert Academic Publisher (2011).
Google Scholar
[2]
P. Kumar, R. Singh and I.P.S. Ahuja, Execution of RP technology- An Indian manufacturing Industry perspective, International Journal of Indian Culture and Business Management 6 2013 162-184.
DOI: 10.1504/ijicbm.2013.052012
Google Scholar
[3]
R. Singh, Some Investigations for small sized product fabrication with FDM for plastic components, Rapid Prototyping Journal 19 2013 58-63.
DOI: 10.1108/13552541311292745
Google Scholar
[4]
P. Kumar, I.P.S. Ahuja and R. Singh, Application of FDM for Rapid Investment castings- a review, International Journal of Material Engg and Innovation 3 2012 204-227.
Google Scholar
[5]
H. K Garg and R. Singh, Experimental Investigations for development of pattern for dies using FDM, Material Science Forum , 701 2012 77-83.
DOI: 10.4028/www.scientific.net/msf.701.77
Google Scholar
[6]
H. K Garg and R. Singh, A framework for development of pattern for dies using FDM", International Journal of Advanced Mechatronics and Robotics 3 2011 53-60.
Google Scholar
[7]
M. Chabbra and R. Singh, Rapid Casting Solution , Rapid prototyping Journal 17 2011 28-350.
Google Scholar
[8]
C.W. Lee, C.K. Chua, C.M. Cheah, L.H. Tan and C. Feng, Rapid investment casting: direct and indirect approaches via fused deposition modeling", International Journal Advanced Manufacturing Technology 23 2004 93-101.
DOI: 10.1007/s00170-003-1694-y
Google Scholar
[9]
P.F. Jacobs and P. D Hilton, Rapid Tooling and Industrial Applications, Marcel Dekker Ltd. 2000 10-18.
Google Scholar
[10]
G. Tromans, Developments in Rapid Casting, Professional Engineering Publications 2003 14-20.
Google Scholar
[11]
T.T. Wohlers, Wohlers Report 2007: Exclusive Summery, Annual Worldwide Progress Report, Wohlers Associates Inc, Fort Collins CO, (2007).
Google Scholar
[12]
M.K. Agarwala, R. Van Weeren, A. Bandyopadhyay, P.J. Whalen, A. Safari and S.C. Danforth, Fused deposition of ceramics and metals; an over view, Proceeding of Solid Freeform Fabrication Symposium, The university of Texas, Austin, TX, 1996 385-392.
Google Scholar
[13]
S.H. Masood and W.Q. Song, Development of new metal/ polymer materials for rapid tooling using fused deposition modelling, Material and Design 25 2004 587-594.
DOI: 10.1016/j.matdes.2004.02.009
Google Scholar
[14]
R.W. Gray, D.G. Baird and J.H. Bohn, Effect of processing conditions on short TLCP fibre reinforced FDM parts, Rapid Prototyping Journal 4 1998 14-25.
DOI: 10.1108/13552549810197514
Google Scholar
[15]
S. Kumar and J.P. Kruth, Composites by rapid prototyping technology, Materials and Design 31 2010 850–856.
DOI: 10.1016/j.matdes.2009.07.045
Google Scholar
[16]
D.T. Pham and R.S. Gault A comparison of rapid prototyping technologies, Cardiff Rapid Prototyping Centre, Systems Division, School of Engineering, University of Wales Cardiff CF2 3TE, UK , International Journal of Machine Tools & Manufacture 38 1998 1257–1287.
DOI: 10.1016/s0890-6955(97)00137-5
Google Scholar
[17]
T. W Lam, K.M. Yu, K.M. Chueng and C.L. Li, Reinforced thin shell objects Rapid Prototyping by Fused Deposition Modeling, International Journal Advanced Manufacturing Technology 14 1998 631 -638.
DOI: 10.1007/bf01192282
Google Scholar
[18]
S.H. Masood, W. Rattanawong and P. Iovenitti, Part Build Orientations Based on Volumetric Error in Fused Deposition Modelling, International Journal of Advanced Manufacturing Technology 16 2000 162–168.
DOI: 10.1007/s001700050022
Google Scholar
[19]
A.H. Nickel, D.M. Barnett and F.B. Prinz, Thermal stresses and deposition patterns in layered manufacturing , Materials Science and Engineering A317 2001 59–64.
DOI: 10.1016/s0921-5093(01)01179-0
Google Scholar
[20]
S. Anitha, P.A. Radhakrishnan, Critical parameters influencing the quality of prototypes in fused deposition modeling, International Journal of Advance Manufacturing Technology 118 2001 385-388.
DOI: 10.1016/s0924-0136(01)00980-3
Google Scholar
[21]
Y. Yang, J.Y.H. Fuh, H.T. Loh and Y.S. Wong, Multi-Orientational Deposition to Minimize Support in the Layered Manufacturing Process, Journal of Manufacturing system 22 2003 116-128.
DOI: 10.1016/s0278-6125(03)90009-4
Google Scholar
[22]
S. Upcraft and R. Fletcher, Rapid Prototyping Technologies, Assembly Automation Journal 23 2003 318-330.
DOI: 10.1108/01445150310698634
Google Scholar
[23]
P.M. Gronet, G.A. Waskewicz and C. Richardson, Preformed acrylic cranial implants using fused deposition modeling: A clinical report, The Journal of Prosthetic Dentistry 90 2003 429-433.
DOI: 10.1016/j.prosdent.2003.08.023
Google Scholar
[24]
K. Thrimurthulu, P.M. Pandey and N. Reddy, Optimum part deposition orientation in fused deposition modeling, International Journal of Machine Tools & Manufacture 44 2004 585–594.
DOI: 10.1016/j.ijmachtools.2003.12.004
Google Scholar
[25]
W. Lee, C.K. Chua, C.M. Cheah, L.H. Tan and C. Feng, Rapid investment casting: direct and indirect approaches via fused deposition modeling, International Journal Advanced Manufacturing Technology 23 2004 93-101.
DOI: 10.1007/s00170-003-1694-y
Google Scholar
[26]
S.H. Masood and W.Q. Song, Thermal characteristics of new metal/ polymer materials for FDM rapid prototyping process, Assembly Automation 25 2005 309-315.
DOI: 10.1108/01445150510626451
Google Scholar
[27]
C.S. Lee, S.G. Kim, H.J. Kim and S.H. Ahn, Measurement of anisotropic compressive strength of rapid prototyping parts, Journal of Materials Processing Technology 207 2007 627–630.
DOI: 10.1016/j.jmatprotec.2006.11.095
Google Scholar
[28]
P. Rochus, J.Y. Plesseria, M. V Elsen, J.P. Kruth, R. Carrusc and T. Dormal, New applications of rapid prototyping and rapid manufacturing (RP/RM ), Act Astronautic 61 2007 352-359.
DOI: 10.1016/j.actaastro.2007.01.004
Google Scholar
[29]
H. Xiaomao, Y. Chunsheng, M. Jianhua and L. Haitao, Slice Data Based Support Generation Algorithm for Fused Deposition Modeling, Tsinghua Science and Technology 14 2009 223-228.
DOI: 10.1016/s1007-0214(09)70096-3
Google Scholar
[30]
D. Ahn, J.H. Kweon, S. Kwon, J. Song and S. Lee, Representation of surface roughness in fused deposition modeling, Journal of Materials Processing Technology 209 2009 5593–5600.
DOI: 10.1016/j.jmatprotec.2009.05.016
Google Scholar
[31]
L.M. Galantucci, F Lavecchia and G. Percoco, Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling, Manufacturing Technology 59 2010 247–250.
DOI: 10.1016/j.cirp.2010.03.074
Google Scholar
[32]
A.K. Sood, R.K. Ohdar and S.S. Mahapatra, Parametric appraisal of Mechanical property of fused deposition modelling processed parts, Materials and Design 31 2010 287–295.
DOI: 10.1016/j.matdes.2009.06.016
Google Scholar
[33]
M. Nikzad, S.H. Masood and I. Sbarski, Thermo Mechanical Properties of a highly filled Polymeric Composites for Fused Deposition Modeling, Materials and Design 32 2011 3448-3456.
DOI: 10.1016/j.matdes.2011.01.056
Google Scholar