Giant Magnetoimpedance in Fe73.5Cu1Nb2V1Si13.5B9 Nanocrystalline Ribbons

Article Preview

Abstract:

In the present work, the giant magnetoimpedance effect has been found in Fe73.5Cu1Nb2V1Si13.5B9 nanocrystalline ribbons. The optimum annealing temperature for obtaining largest GMI is about 550°C. Fe73.5Cu1Nb2V1Si13.5B9 with average grain size of 15 nm after annealing at 550°C for 30 min presents a magnetoimpedance of-74% at 700 kHz under H=90 Oe. The MI effect at high frequency is due to the change of Z via the variation of permeability or the penetration depth under the external field. The positive magnetoimpedance ΔZ/Z is 36% and positive magnetoresistance ΔR/R is 79% at H= 10 Oe and f=5MHz. We observe a huge magnetoreactance ΔX/X of –375% at a very low frequency of 50 kHz, which is a magnetoinduction effect due to the movement of domain wall. The smaller GMI for nanocrystalline Fe73.5Cu1Nb2V1Si13.5B9 ribbons annealed above 550°C is mainly connected with the decrease of permeability due to the precipitation of Fe2B phase in ribbons. Our results show that the partial substitution of expensive Nb by cheap V in FeCuNbSiB could be a successful way to prepare the GMI materials with high performance and low cost.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

99-104

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yoshizawa, S. Oguma, and K. Yamanchi, J. App. Phys. 64 (1988) 6044.

Google Scholar

[2] L.V. Panina and K, Mohri, Appl. Phys. Lett., 65 (1994) 1189.

Google Scholar

[3] L.V. Panina, K. Mohri, T. Uchiyama, and M. Noda, IEEE Trans. Magn. 31 (1995) 1249.

Google Scholar

[4] M. Knobel and K.R. Pirota, J. Magn. Magn. Mater., 242 (2002) 33.

Google Scholar

[5] M.H. Phan, H.X. Peng, Prog. Mater. Sci. 53 (2008) 323.

Google Scholar

[6] J. Hu, S. Zhou, W, Chen, Y. Zhong, Solid State Communi. 109 (1999) 661.

Google Scholar

[7] W. Ku, F. Ge, and J. Zhu, J. Phys. D: Appl. Phys. 39 (20060 4299.

Google Scholar

[8] Yanzhong Zhang, J. Functional Mater. Devices, 3 (1997) 162.

Google Scholar

[9] Y. Zhang, S Nian, H. Jin, G. Xu, Acta Metall. Sinica, 31 (1995) B212.

Google Scholar

[10] Yanzhong Zhang, Chin. Sci. Bull. 40 (1999) 989.

Google Scholar

[11] J. Jiang, Y. Di, Y. Lin, S. Bie, G. Du, H. He, Rare Met. Mater Eng. 36 (2007)2212.

Google Scholar

[12] J. Hu, H. Qin, B. Li, Y. Wan, Y. Zhang, J. Magn. Magn. Mater. 323 (2011) 1185.

Google Scholar

[13] T. Sahoo, A. C. Mishra, V. Srinivas, T. K. Nath, M. Srinivas, B. Majumdar, J. Appl. Phys. 110 (2011) 083918.

Google Scholar