A Lifetime of Metallic Nanoparticles in Heat Exchange Liquids

Article Preview

Abstract:

This work is focused on lifetime prediction of metallic nanoparticles in heat exchange nanofluids. Copper, nickel and iron nanoparticles were studied in 40 wt.% aqueous solution of potassium formate and propylene glycol. Materials were observed by means of mass loss exposure tests, linear polarization resistance and potentiodynamic measurements. Potassium formate solution is not suitable bearing liquid for metallic nanoparticles. Propylyne glycol seems promising, however additional corrosion prevention needs to be applied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-27

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Meng, D. Wu, L. Wang, H. Zhu, Q. Li, Carbon nanotube glycol nanofluids: Photo-thermal properties, thermal conductivities and rheological behavior, Particuology, 10 (2012) 614-618.

DOI: 10.1016/j.partic.2012.04.001

Google Scholar

[2] I. Palabiyik, Z. Musina, S. Witharana, Y. Ding, Dispersion stability and thermal conductivity of propylene glycol-based nanofluids, Journal of Nanoparticle Research, 13 (2011) 5049-5055.

DOI: 10.1007/s11051-011-0485-x

Google Scholar

[3] R. Saidur, K.Y. Leong, H.A. Mohammad, A review on applications and challenges of nanofluids, Renewable and Sustainable Energy Reviews, 15 (2011) 1646-1668.

DOI: 10.1016/j.rser.2010.11.035

Google Scholar

[4] E.V. Timofeeva, W. Yu, D.M. France, D. Singh, J.L. Routbort, Base fluid and temperature effects on the heat transfer characteristics of SiC in ethylene glycol/H2O and H2O nanofluids, Journal of Applied Physics, 109 (2011) 014914.

DOI: 10.1063/1.3524274

Google Scholar

[5] H. Xie, W. Yu, W. Chen, MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles, Journal of Experimental Nanoscience, 5 (2010) 463-472.

DOI: 10.1080/17458081003628949

Google Scholar

[6] Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids, International Journal of Heat and Fluid Flow 21 (2000) 58-64.

DOI: 10.1016/s0142-727x(99)00067-3

Google Scholar

[7] J. -C. Yang, F. -C. Li, Y. -R. He, Y. -M. Huang, B. -C. Jiang, Experimental study on the characteristics of heat transfer and flow resistance in turbulent pipe flows of viscoelastic-fluid-based Cu nanofluid, International Journal of Heat and Mass Transfer, 62 (2013).

DOI: 10.1016/j.ijheatmasstransfer.2013.02.074

Google Scholar

[8] G. Żyła, M. Cholewa, A. Witek, Rheological properties of diethylene glycol-based MgAl2O4 nanofluids, RSC Advances, 3 (2013) 6429.

DOI: 10.1039/c3ra40187a

Google Scholar

[9] R. Kathiravan, R. Kumar, A. Gupta, R. Chandra, Preparation and pool boiling characteristics of copper nanofluids over a flat plate heater, International Journal of Heat and Mass Transfer, 53 (2010) 1673-1681.

DOI: 10.1016/j.ijheatmasstransfer.2010.01.022

Google Scholar

[10] V. Suryanaryanan, R.T. Tom, A.S. Nairn, T. Pradeep, Electrochemical investigations of oxide coated nanoparticles, Proceedings of the National Academy of Sciences A, 70 (2004) 483-488.

Google Scholar

[11] X. Wei, L. Wang, Synthesis and thermal conductivity of microfluidic copper nanofluids, Particuology, 8 (2010) 262-271.

DOI: 10.1016/j.partic.2010.03.001

Google Scholar

[12] J. Leitner, M. Kamarádek, Termodynamický popis nanosystémů, Chemické Listy, 107 (2013) 606–613.

Google Scholar

[13] L. Tang, X. Li, R.C. Cammarata, C. Friesen, K. Sieradzki, Electrochemical Stability of Elemental Metal Nanoparticles, Journal of American Chemical Society, 132 (2010) 11722–11726.

DOI: 10.1021/ja104421t

Google Scholar