[1]
L. Peroni, M . Scapin, M. Avalle, J. Weise, D. Lehmhus, Dynamic mechanical behavior of syntactic iron foams with glass microspheres, Mater Sci Eng A. 552(0) (2012) 364-375.
DOI: 10.1016/j.msea.2012.05.053
Google Scholar
[2]
L. Peroni, M . Scapin, M. Avalle, J. Weise, D. Lehmhus, J. Baumeister, M. Busse, Syntactic Iron Foams - On Deformation Mechanisms and Strain-Rate Dependence of Compressive Properties, Adv Eng Mater. 14(10) (2012) 909-918.
DOI: 10.1002/adem.201200160
Google Scholar
[3]
A. Daoud, MT. Abou El-khair, M. Abdel-Aziz, P. Rohatgi, Fabrication, microstructure and compressive behavior of ZC63 Mg–microballoon foam composites, Compos Sci Technol. 67(9) (2007) 1842-1853.
DOI: 10.1016/j.compscitech.2006.10.023
Google Scholar
[4]
PK. Rohatgi, A. Daoud, BF. Schultz, T. Puri, Microstructure and mechanical behavior of die casting AZ91D-Fly ash cenosphere composites, Composites Part A. 40(6–7) (2009) 883-896.
DOI: 10.1016/j.compositesa.2009.04.014
Google Scholar
[5]
A. Daoud, Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting, Mater Sci Eng A. 488(1–2) (2008) 281-295.
DOI: 10.1016/j.msea.2007.11.020
Google Scholar
[6]
A. Daoud, Effect of strain rate on compressive properties of novel Zn12Al based composite foams containing hybrid pores, Mater Sci Eng A. 525(1–2) (2009) 7-17.
DOI: 10.1016/j.msea.2009.05.038
Google Scholar
[7]
XF. Tao, YY. Zhao, Compressive failure of Al alloy matrix syntactic foams manufactured by melt infiltration, Mater Sci Eng A. 549 (2012) 228-232.
DOI: 10.1016/j.msea.2012.04.047
Google Scholar
[8]
PK. Rohatgi, N. Gupta, BF. Schultz, DD. Luong, The synthesis, compressive properties, and applications of metal matrix syntactic foams, JOM. 63(2) (2011) 36-42.
DOI: 10.1007/s11837-011-0026-1
Google Scholar
[9]
JA. Santa Maria, BF. Schultz, JB. Ferguson, PK. Rohatgi, Al–Al2O3 syntactic foams – Part I: Effect of matrix strength and hollow sphere size on the quasi-static properties of Al-A206/Al2O3 syntactic foams, Mater Sci Eng A. 582 (2013) 415-422.
DOI: 10.1016/j.msea.2013.05.081
Google Scholar
[10]
JB. Ferguson, JA. Santa Maria, BF. Schultz, PK. Rohatgi, Al–Al2O3 syntactic foams—Part II: Predicting mechanical properties of metal matrix syntactic foams reinforced with ceramic spheres, Mater Sci Eng A. 582 (2013) 423-432.
DOI: 10.1016/j.msea.2013.06.065
Google Scholar
[11]
DD. Luong, OM. Strbik III, VH. Hammond, N. Gupta, K. Cho, Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization at quasi-static and high strain rates, J Alloys Compounds. 550 (2013).
DOI: 10.1016/j.jallcom.2012.10.171
Google Scholar
[12]
DD. Luong, N. Gupta, A. Daoud, PK. Rohatgi, High strain rate compressive characterization of aluminum alloy/fly ash cenosphere composites, JOM. 63(2) (2011) 53-56.
DOI: 10.1007/s11837-011-0029-y
Google Scholar
[13]
DD. Luong, N. Gupta, PK. Rohatgi, The high strain rate compressive response of Mg-Al alloy/fly Ash cenosphere composites, JOM. 63(2) (2011) 48-52.
DOI: 10.1007/s11837-011-0028-z
Google Scholar
[14]
XF. Tao, LP. Zhang, YY. Zhao, Al matrix syntactic foam fabricated with bimodal ceramic microspheres, Mater Des. 30(7) (2009) 2732-2736.
DOI: 10.1016/j.matdes.2008.11.005
Google Scholar