[1]
G.Q. Wang. Electrical resistance measurement of conductive network in short carbon fibre-polymer composites. Test Method. (1997) 277-286.
DOI: 10.1016/s0142-9418(96)00049-9
Google Scholar
[2]
N.M. Tong. Electrical and mechanical properties of epoxy resin/short carbon fiber/sericite composites. Compos. Interfaces. 1 (2008) 15.
DOI: 10.1163/156855408783431264
Google Scholar
[3]
J. Vilcakoa PSa, O. Quadrat. Electrical conductivity of carbon fibrespolyester resin composites in the percolation threshold region. Eur. Polym. J. 38 (2002) 2343–2347.
DOI: 10.1016/s0014-3057(02)00145-3
Google Scholar
[4]
Z. Hu, M.R. Hossan. Strength Evaluation and Failure Prediction of Short Carbon Fiber Reinforced Nylon Spur Gears by Finite Element Modeling. Appl. Compos. Mater. 20, (2012) 315-330.
DOI: 10.1007/s10443-012-9274-7
Google Scholar
[5]
A.M. Bishai, A.M. Ghoneim, A.A.M. Ward, A.F. Younan. Electrical conductivity of styrene‐butadiene rubber/polyester short-fiber reinforced with different types of carbon black. Polym. -Plast. Technol. Eng. 42 (2003) 701-710.
DOI: 10.1081/ppt-120023104
Google Scholar
[6]
K. Tanaka, M. Yamaguchi, T. Takahashi, H. Miyagawa, H. Yoshimatsu. Electrical conductivity of poly(vinyl chloride) filled with PAN-based and pitch-based carbon short-fibers. Adv. Compos. Mater. 4 (1994) 1-15.
DOI: 10.1163/156855194x00105
Google Scholar
[7]
G.Q. Wang. ElectricaI conductivity of poly (VinyI Chloride) plastisol-short carbon fiber composite. Polym. Eng. Sci. 37 (1997).
DOI: 10.1002/pen.11649
Google Scholar
[8]
J. Vilcakova PS, O. Quadrat. Electrical conductivity of carbon fibres/polyester resin composites in the percolation threshold region. Eur. Polym. J. 38 (2002).
DOI: 10.1016/s0014-3057(02)00145-3
Google Scholar
[9]
G. Lanciano, A. Greco, A. Maffezzoli, L. Mascia. Effects of thermal history in the ring opening polymerization of CBT and its mixtures with montmorillonite on the crystallization of the resulting poly(butylene terephthalate). Thermochim. Acta. 493 (2009).
DOI: 10.1016/j.tca.2009.04.004
Google Scholar
[10]
G. Romhány, J. Vígh, R. Thomann, J. Karger-Kocsis. pCBT/MWCNT nanocomposites prepared by in situ polymerization of CBT after solid-phase high-energy ball milling of CBT with MWCNT. Macromol. Mater. Eng. 296 (2011) 544-550.
DOI: 10.1002/mame.201000381
Google Scholar
[11]
E. Mäder, S.L. Gao, R. Plonka, J. Wang. Investigation on adhesion, interphases, and failure behaviour of cyclic butylene terephthalate (CBT)/glass fiber composites. Compos. Sci. Technol. 67 (2007) 3140-3150.
DOI: 10.1016/j.compscitech.2007.04.014
Google Scholar
[12]
T. Abt, M. Sánchez-Soto, S. Illescas, J. Aurrekoetxea, M. Sarrionandia. Toughening of in situ polymerized cyclic butylene terephthalate by addition of tetrahydrofuran. Polym. Int. 60 (2011) 549-556.
DOI: 10.1002/pi.2977
Google Scholar
[13]
J. Baets, M. Dutoit, J. Devaux, I. Verpoest. Toughening of glass fiber reinforced composites with a cyclic butylene terephthalate matrix by addition of polycaprolactone. Compos. Pt. A. 39 (2008) 3-18.
DOI: 10.1016/j.compositesa.2007.09.013
Google Scholar