Progress in Preparation of Phenolic Fibers by Electrospinning

Article Preview

Abstract:

Phenolic fiber is a versatile material. This article focused on introduction of the progress of generating phenolic fibers using solution electrospinning method and its applications, as well as the trail exploration of preparing phenolic fibers by melt electrospinning. For the research on preparation of phenolic fibers using solution electrospinning, researchers added polymers or additive agents to adjust the viscosity and electrical conductivity of the spinning solution. Then they cured and carbonized the electrospun fibers to reach their varied aims. After these two processes, the brittle nature of the phenolic fibers has been greatly changed. What’s more, the modification makes it easier to be dealed with in the analysis tests and be more suitable to be applied as adsorbent materials, nonconductive materials, and flexible materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

638-642

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Economy, R.A. Clark, U.S. Patent 3, 650, 102. (1968).

Google Scholar

[2] F. Gugumus, New trends in the stabilization of polyolefin fibers, Polym. Degrad. Stab. 44(1994) 273-297.

Google Scholar

[3] S.L. Gibson, V. Baranauskas, J.S. Riffle, U. Sorathia, Cresol novolac-epoxy networks: properties and processability, Polym. 43 (2002) 7389-7398.

DOI: 10.1016/s0032-3861(02)00538-4

Google Scholar

[4] C.S. Tyberg, K. Bergerona, M. Sankarapandiana, P. Shiha, A.C. Loosa, D.A. Dillarda, J.E. McGratha, J.S. Rifflea, U. Sorathiab, Structure-property relationships of void-free phenolic-epoxy matrix materials, Polym. 41 (2000) 5053-5062.

DOI: 10.1016/s0032-3861(99)00574-1

Google Scholar

[5] S.S. Tzeng, Y.G. Chr, Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis, Mater. Chem. Phys. 73 (2002) 162-169.

DOI: 10.1016/s0254-0584(01)00358-3

Google Scholar

[6] N. Worasuwannarak, S. Hatori, H. Nakagawa, K. Miura, Effect of oxidation pre-treatment at 220 to 270℃ on the carbonization and activation behavior of phenolic resin fiber, Carbon. 41 (2003) 933-944.

DOI: 10.1016/s0008-6223(02)00426-8

Google Scholar

[7] S. Imaizumi, H. Matsumoto, K. Suzuki, M. Minagawa, M. Kimura, A. Tanioka, Phenolic Resin-Based Carbon Thin Fibers Prepared by Electrospinning: Additive Effects of Poly(vinyl butyral) and Electrolytes, Polym. J. 41 (2009) 1124–1128.

DOI: 10.1295/polymj.pj2009160

Google Scholar

[8] M.X. Wang, Z.H. Huang, F.Y. Kang, K.M. Liang, Porous carbon nanofibers with narrow pore size distribution from electrospun phenolic resins, Mater. Lett. 65 (2011) 1875-1877.

DOI: 10.1016/j.matlet.2011.03.095

Google Scholar

[9] L. Wang, Z.H. Huang, M.B. Yue, M.Z. Li, M.X. Wang, F.Y. Kang, Preparation of flexible phenolic resin-based porous carbon fabrics by electrospinning, Chem. Eng. J. 218 (2013) 232-237.

DOI: 10.1016/j.cej.2012.12.042

Google Scholar

[10] Y. Bai, Z.H. Huang, F.Y. Kang, Electrospun preparation of microporous carbon ultrafine fibers with tuned diameter, pore structure and hydrophobicity from phenolic resin, Carbon. 66 (2014) 705-712.

DOI: 10.1016/j.carbon.2013.09.074

Google Scholar

[11] N. Bhardwaj, S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biochem. Arch. 28 (2010) 325-347.

DOI: 10.1016/j.biotechadv.2010.01.004

Google Scholar

[12] D.L. Gee, G.E. Wnek, S.M. Zhuang, J.M. Layman, P. Lipowicz, Carbon Fibers from Electrospun Phenolic Resins and Poly(Acrylonitrile) and Their Adsorption Properties, Polym. Prepr. 44 (2003) 120-121.

Google Scholar

[13] K. Suzuki, H. Matsumoto, M. Minagawa, M. Kimura, A. Tanioka, Preparation of Carbon Fiber Fabrics from Phenolic Resin by Electrospray Deposition, Polym. J. 39 (2007) 1128–1134.

DOI: 10.1295/polymj.pj2007091

Google Scholar

[14] L. Wang, Z.H. Huang, M.B. Yue, M.Z. Li, M.X. Wang, F.Y. Kang, Chem. Eng. J. 218 (2013) 232-237.

Google Scholar

[15] C. Ma, Y. Song, J.L. Shi, D.Q. Zhang, M. Zhong, Q.G. Guo, L. Liu, Phenolic-based carbon nanofiber webs prepared by electrospinning for supercapacitors, Mater. Lett. 76 (2012) 211-214.

DOI: 10.1016/j.matlet.2012.02.100

Google Scholar

[16] C. Ma, Y. Song, J.L. Shi, D.Q. Zhang, X.L. Zhai, M. Zhong, Q.G. Guo, L. Liu, Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes, Carbon. 51 (2013) 290-300.

DOI: 10.1016/j.carbon.2012.08.056

Google Scholar

[17] M.M. Teng, J.L. Qiao, F.T. Li, P.K. Bera, Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules, Carbon. 50 (2012) 2877-2886.

DOI: 10.1016/j.carbon.2012.02.056

Google Scholar

[18] C.L. Liu, Y.G. Ying, H.L. Feng, W.S. Dong, Microwave promoted rapid curing reaction of phenolic fibers, Polym. Degrad. Stab. 93 (2008) 507-512.

DOI: 10.1016/j.polymdegradstab.2007.11.003

Google Scholar

[19] D.Q. Zhang, J.L. Shi, Q.G. Guo, Y. Song, L. Liu, G.T. Zhai, Preparation Mechanism and Characterization of a Novel, Regulable Hollow Phenolic Fiber, J. Appl. Polym. Sci. 104 (2007) 2108-2112.

DOI: 10.1002/app.25787

Google Scholar

[20] Y. Liu, F.W. Zhao, C. Zhang, J.M. Zhang, W.M. Yang, Solvrnt-free preparation of poly(lactic acid) fibers by melt electrospinning using an umbrella-like spray head and alleviation of the problematic thermal degradation, J. Serb. Chem. Soc. 77 (2012).

DOI: 10.2298/jsc110711027l

Google Scholar

[21] D.W. Hutmacher, P. D. Dalton, Melt electrospinning, Chem. Asian J. 6 (2011) 44-56.

Google Scholar