Infrared Spectral Characteristics of Azobenzene Containing Side-Chain Liquid Crystal Polymer

Article Preview

Abstract:

In order to study the infrared spectral characteristics of side-chain liquid crystal polymer, an infrared monomer containing a permanent dipole azobenzene group spaced from the methacryloyl moiety by a polymethylene segment was synthesized in three steps starting from 4-cyanoaniline. The monomer was polymerized with a push-pull azobenzene monomer, (-)-menthy1 methacrylate in the presence of azobisisobutyronitrile (AIBN) as the radical initiator. Structurally similar amphiphilic polymers were obtained by polymerization of analogous methacrylates in which the polymethylene spacers was replaced by oligo (oxyethy1ene) segments. The obtained polymer was characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectro photometry (UV-vis), Hot Stage Polarized Microscopy (HS-POM), Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analyzer (TGA). Its infrared emissivity at different temperatures was tested by Bruker-V70 infrared analyzer. The results showed that the azobenzene poly (methyl methacrylate) (azo-PMMA) has high glass transition temperature(about 40°C), good thermal stability(divied in 294°C) and low infrared emission under 70%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

649-655

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. A. Weiss, C. K. Ober: Liq. Cryst. P., ACS: Washington, DC (1990).

Google Scholar

[2] F. Papadimitrakopoulos, S. L. Hus, and W. Macknight. J. Macro Mol. 25 (1992) 4671.

Google Scholar

[3] Isayev, A. L. and Kyu, T. (1996). Liq. Cryst. Polymer System, American Chemical Society: Washington, DC.

Google Scholar

[4] T. Narasimhaswamy, D. K. Lee and K. Yamamoto: Am. Chem. Soc. 127(2005) 58.

Google Scholar

[5] X. Gao, R. Liu, and J. Zhang: Ind. Eng. Chem. Res. 47 (2008) 2590.

Google Scholar

[6] C. S. Hsu, and V. Percec: J. Polym. Sci. Polym. Chem. Ed. 7(1989) 453.

Google Scholar

[7] C. S. Hsu, J. H. Lin, and L. R. Chou: Macromolecules. 2 (1992) 7126.

Google Scholar

[8] P. Le Barney, J. C. Dubois and C. Friedrich: Polym. Bull. (Berlin). 15 (1986) 341.

Google Scholar

[9] C. J. Hsiech, S. H. Wu, and G. H. Hsiue:J. Polym. Sci. Polym. Chem. 32(1994) 1077.

Google Scholar

[10] Y. H. Wu, Y. H. Lu, and C. S. Hsu: J. Macromol. Sci. Pure Appl. Chem. A. 32(1995)1471.

Google Scholar

[11] H. Finkelmann, U. Keichle, and G. Reharge: Mol. Cryst. Liq. Cryst. 94 (1983) 3453.

Google Scholar

[12] D. J. Broer, J. Lub, and G. N. Mol: Nature. 378 (1995) 467.

Google Scholar

[13] G. M. Day, H. J. Kim, and W. R. Jackson: Acta. Polym. 50(1999) 96.

Google Scholar

[14] S. J. Zheng, Z. F. Li, and S. Y. Zhang: Polym. Advan. Technol. 11 (2000)219.

Google Scholar

[15] V. Shibaev, A. bBobrovsky, N. Boiko, etcl: Polym. Int. 49 (2000)931.

Google Scholar

[16] P. V. Shibaev, V. I. Kopp, and A. Z. Genack: J. Phys. Chem. B. 107(2003)6961.

Google Scholar

[17] Lin, Q., Pasatta, J., & Long, T. E. (2003). J. Polym. Sci. Part A: Polym. Chem. 41(2004) 2512.

Google Scholar

[18] M. Kaspar, A. Bubnov, V. Hamplova, etcl: Mol. Cryst. Liq. Cryst. 448 (2005)49.

Google Scholar

[19] N. I. Boiko, A. I. Lysachkov, and S. A. Ponomarenko: Colloid Polym. Sci. 283 (2005)115.

Google Scholar

[20] C. Muge, Y. Sahin, and Y. Z. Menceloglu: J. Appl. Polym. Sci. 102 (2006)(1915).

Google Scholar

[21] G. H. Hsiue, and R. H. Lee: J. Polym. Sci. Part B: Polym. Phys. 44 (2006)(2035).

Google Scholar

[22] R. Ohta, F. Togashi, and H. Goto: Macromolecules. 40 (2007)5228.

Google Scholar

[23] K. Suda, and K. Akagi: J. Polym. Sci. Part A: Polym. Chem. 46 (2008)3591.

Google Scholar

[24] H. Ringsdorf and A. Schneller: Br. Polym. J. 13 (1981) 43.

Google Scholar

[25] R. Centore and P. Inaelli, in Liquid Crystal Polymers, edited by C. Carfagna. Elsevier, New York, 1994, p.31–45.

Google Scholar

[26] V. Percec, C. Pugh, C. B. McArdle: in: Side Chain Liquid Crystal Polymers, 1st ed. Chapman and Hall: New York1989.

Google Scholar

[27] P. L. Magagnini, A. Marchetti, F. Matera, G. Pizzirani, and G. Turchi: Eur. Polym. 10(1974)585.

Google Scholar

[28] A. Natansohn, and P. Rochon: Chem. Rev. 102 (2002)4139.

Google Scholar

[29] M. Han, and K. Ichimura: Macromolecules. 34 (2001) 82.

Google Scholar

[30] T. Seki, T. Tamaki: Chem. Lett. 22 (1993)1739.

Google Scholar

[31] Y. Wu, Y. Demachi, O. Tsutsumi, and A. Kanazawa: Macromolecules. 31 (1998)1104.

Google Scholar

[32] E. Uchida, T. Shiraku, H. Ono, etal: Macromolecules. 37 (2004)5282.

Google Scholar

[33] S. Freiberg, F.L. Labarthet, P. Rochom, etcl: Macromolecules. 36 (2003)2680.

Google Scholar

[34] S. Kadota, K. Aoki, S. Nagano, etcl: J. Am. Chem. Soc. 127(2005)8266.

Google Scholar

[35] H. Yu, T. Iyoda, and T. Ikeda: J. Am. Chem. Soc. 128(2006)11010.

Google Scholar

[36] H. Yu, S. Asaoka, and A. Shishido: Small. 3(2007)768.

Google Scholar

[37] L. Cui, Y. Zhao, and A. Yavrian: Macromolecules. 36(2003)8246.

Google Scholar

[38] W. Deng, P. -A. Albouy, E. Lacaze, etcl. Macromolecules. 41(2008)2459.

Google Scholar

[39] P. Forcen, L. Oriol, C. Sanchez, etcl. J. Polym. Sci., Part A: Polym. Chem. 45(2007)1899.

Google Scholar

[40] G. Wang, X. Tong, and Y. Zhao: Macromolecules. 37(2004)8911.

Google Scholar

[41] K. Moriya, T. Seki, M. Nakagawa, etcl. K. Macromol. Rapid Commun. 21(2000)1309.

Google Scholar

[42] J. H. Liu, Y. H. Chiu: J. Polym. Sci., Part A: Polym. Chem. 48(2010)1142.

Google Scholar

[43] X. He, W. Sun, D. Yan, etcl. J. Polym. Sci. Part A: Polym. Chem. 46(2008)4442.

Google Scholar

[44] Y. Zhao, X. Tong, Y. Zhao, Macromol. Rapid Commun. 31(2010)986.

Google Scholar

[45] C. Berges, N. Gimeno, L. Oriol, etcl. Eur. Polym. J. 48 (2012)613.

Google Scholar

[46] X. He, W. Sun, D. Yan, etcl. Eur. Polym. J. 44(2008)42.

Google Scholar

[47] K. Mizuho, D. Yoshiyuki and G. Kohei: Mol. Cryst. Liq. Cryst. 563(2012)121–1300.

Google Scholar

[48] J. Sivakumar and S. Kathavarayan: Mol. Cryst. Liq. Cryst. 562 (2012)10–27.

Google Scholar

[49] L. J. Erik,E. S. Ivan and R. F. Steven: Liq. Cryst. 39(2012) 857–863.

Google Scholar

[50] J. Sivakumar and S. Kathavarayan: Mol. Cryst. Liq. Cryst. 552(2012)53–70.

Google Scholar

[51] D. D. Perrin and W. L. F. Armarigo: Purification of Laboratory Chemicals, third ed., New York, (1998).

Google Scholar

[52] H. Hirschrmann, P. Roberts and F. J. Davis: J. Polym. 42(2001)7063–7071.

Google Scholar

[53] H. G. Curme, C. C. Natale and D. T. Kelley: J. Phys. Chem. 71(1976)767.

Google Scholar

[54] T. Nishikubo, T. Jchijyo, and T. Takaodo: J. Appl. Polym. Sci. 18(2009)18.

Google Scholar

[55] P.A. Kittle, US Patent 4, 034, 129 (1977).

Google Scholar

[56] R.J. Davis and Z. Liu: Chem. Mater. 9 (1997)2311.

Google Scholar