Synthesis of Polythiophene Derivatives with Schiff Base Groups and Use as an Active Layer in Polymer Solar Cell Devices

Article Preview

Abstract:

Two kinds of Schiff bases polymers named P3TA4A and P3TA4B were prepared by the chemical oxidation method. The structures of Schiff bases polymers were determined by FT-IR and 1H NMR. The GPC result showed that the number-average molecular weight of P3TA4A and P3TA4B was 7400 g/mol and 12500 g/mol with a molecular weight distribution of 1.63 and 1.27, respectively. The cyclic voltammetry curves showed that the energy gap of P3TA4A and P3TA4B was 1.929 eV and 1.944 eV, respectively. Ultraviolet-visible spectra and Luminescence spectra showed that the maximum absorption and maximum emission wavelength of was 275 nm, 400 nm for P3TA4A and 448 nm, 451 nm for P3TA4B. The open-circuit voltage of the polymer solar devices was 3 mv and 2.5 mv, respectively. The results indicated that the Schiff bases substituents at the 3-position of polythiophenes play an important role on the photoelectric conversion efficiency of conducting polymers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

668-674

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.D. McCullough, Adv. Mater., 1998, 10, 93-116.

Google Scholar

[2] Y. Yao, J. Hou, Z. Xu, G. Li and Y. Yang, Adv. Funct. Mater., 2008, 18, 1783-1789.

Google Scholar

[3] S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee and A.J. Heeger, Nat. Photon., 2009, 3, 297-302.

Google Scholar

[4] N. Kim, I.H. Oh, E. Lee, S. Yoon, M. Kim and C.E. Lee, J. Korean Phys. Soc., 2009, 55, 1031-1035.

Google Scholar

[5] Y.Y. Liang and L.P. Yu, Acc. Chem. Res., 2010, 43, 1227-1236.

Google Scholar

[6] J.B. You, L.T. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G. Li and Y. Yang, Nat. Commun., 2013, 6, 180-189.

DOI: 10.1038/ncomms2411

Google Scholar

[7] J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger and G.C. Bazan, Nat. Mater., 2007, 6, 497-500.

Google Scholar

[8] P. Schilinsky, C. Waldauf and C.J. Brabec, Appl. Phys. Lett., 2002, 81, 3885-3887.

DOI: 10.1063/1.1521244

Google Scholar

[9] Y. Segawa, T. Higashihara and M. Ueda, Polym. Chem., 2013, 4, 1208-121.

Google Scholar

[10] C. Gao and D. Yan, Prog. Polym. Sci., 2004, 29, 183-275.

Google Scholar

[11] H. Chen, J. Kong, W. Tian and X.D. Fan, Macromolecules, 2012, 45, 6185-6195.

Google Scholar

[12] J. Kong, T. Schmalz, G. Motz and A.H.E. Müller, Macromolecules, 2011, 44, 1280-1291.

Google Scholar

[13] Z. M. Cui, W. Y. Yuan and C. M. Li, J. Mater. Chem. A, 2013, 1, 12926-12931.

Google Scholar

[14] H. S. Mangold, T. V. Richter, S. Link, U. Würfel and S. Ludwigs, J. Phys. Chem. B, 2012, 116, 154-159.

Google Scholar

[15] Y. Huang, L. Huo, S. Zhang, X. Guo, C.C. Han, Y. Li and J. Hou, Chem. Commun., 2011, 47, 8904-8906.

Google Scholar

[16] H.Y. Chen, J.H. Hou, S.Q. Zhang, Y.Y. Liang, G.W. Yang, Y. Yang, L.P. Yu, Y. Wu and G. Li, Nat. Photon., 2009, 3, 649-653.

Google Scholar

[17] W. Y. Yuan, Z. S. Lu and C. M. Li, J. Mater. Chem. A, 2013, 1, 6416-6424.

Google Scholar

[18] Y.H. Fu, H. Cha, S. Song, G.Y. Lee, C.E. Park and T. Park, J. Polym. Sci. A: Polym. Chem., 2013, 51, 372-382.

Google Scholar

[19] Y.A. Udum, E. Yildiz, G. Gunbas and L. Toppare, J. Polym. Sci. A: Polym Chem., 2008, 46, 3723-3731.

DOI: 10.1002/pola.22713

Google Scholar

[20] S. Park, S.J. Tark, J.S. Lee, H. Lim and D. Kim, Sol. Energy Mater. Sol. Cells, 2009, 93, 1020-1023.

Google Scholar

[21] Z. Han, J. Zhang, X. Yang, H. Zhu and W. Cao, Sol. Energy Mater. Sol. Cells, 2010, 94, 194-200.

Google Scholar

[22] D.C. Olson, J. Piris, R.T. Collins, S.E. Shaheen and D.S. Ginley, Thin Solid Films, 2006, 496, 26-29.

DOI: 10.1016/j.tsf.2005.08.179

Google Scholar

[23] S. J. Su, C. Cai and J. J. Kido, J. Mater. Chem., 2012, 22, 3447.

Google Scholar

[24] J. S. Chen, C. S. Shi, Q. Fu, F. C. Zhao, Y. Hu, Y. L. Feng and D. G. Ma, J. Mater. Chem., 2012, 22, 5164.

Google Scholar

[25] Y. Lu, Z. Xiao, Y. Yuan, H. Wu, Z. An, Y. Hou, C. Gao and J. Huang, J. Mater. Chem. C, 2013, 1, 630-637.

Google Scholar

[26] P Pfeifer and D Avnir, J. Chem. Phys., 1983, 79, 3558-3565.

Google Scholar

[27] M. Ranger, D. Rondeau and M. Leclerc, Macromolecules, 1997, 30, 7686-7691.

Google Scholar

[28] C. Shi, Y. Yao and Y. Yang, J. Am. Chem. Soc., 2006, 128, 8980-8986.

Google Scholar

[29] S.W. H. Wang and Y. Chen, Macromolecules, 2001, 34, 2981-2986.

Google Scholar

[30] L.M. Chen, Z.R. Hong, G. Li and Y. Yang, Adv. Mater., 2009, 21, 1434-1449.

Google Scholar