Functionalization of Smart Gels with Beta-Cyclodextrin and Release Characteristics to Simulating Drugs

Article Preview

Abstract:

Smart gels have many applications in sensors, actuators, shape memory intelligent devices, recognition, self-healing, drug release, biomimetic soft robot design, biomimetic tactile, neural regeneration, biomimetic membranes, supercapacitor, dye-sensitized solar cells, advanced lithium polymer batteries, environmental fields, biomedical fields, et al. And that cyclodextrins are one of the typical macrocycles with good recognition ability, and endowed with fascinating hydrophobic cavities and hydrophilic surface, which enable the encapsulation of diverse small organic molecules by forming inclusion complexes. In this paper, grafted copolymerization between acrylic acid and N,N-dimethyl acrylamide in the presence of water-soluble cyclodextrins was carried out. The effect of ratio of copolymerization monomer on the grafted polymer was examined. The results indicated that self-crosslinking smart gel with multi-stimuli responsive was obtained by selecting suitable the ratio of copolymerization monomer, its behaviors of swelling/shrinking were examined. The adsorption properties and releasing characteristics of smart gel were performed with simulating drugs. Some meaningful results were obtained. These series grafted copolymer would also be used to modify the surface and interface properties of low-dimensional functional materials or heterostructured nanocomposites for intelligent organic-inorganic functional nanocomposites, some good results were obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

675-683

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Wen, W. Zhu, C. Xue, J. Wu, Q. Han, X. Wang, X. Zhou, H. Jiang: Biosensors and Bioelectronics Vol. 56(2014), p.180.

Google Scholar

[2] J. Li, H. Li, Y. Xue, H. Fang, W. Wang: Sensors and Actuators B Vol. 191(2014), p.619.

Google Scholar

[3] D. Zhang, J. Tong, B. Xia: Sensors and Actuators B Vol. 197(2014), p.66.

Google Scholar

[4] N. Qin, X. Wang, Q. Xiang, J. Xu: Sensors and Actuators B Vol. 191(2014), p.770.

Google Scholar

[5] S. Thatai, P. Khurana, S. Prasad, D. Kumar: Microchemical Journal Vol. 113 (2014), p.77.

Google Scholar

[6] Y. Liu, G. Li, R. Mi, C. Deng, P. Gao: Sensors and Actuators B Vol. 191 (2014), p.537.

Google Scholar

[7] B. Rezaei, H. Lotfi-Forushani, A.A. Ensafi: Materials Science and Engineering C Vol. 37 (2014), p.113.

Google Scholar

[8] L. Ionov: Adv. Funct. Mater. Vol. 23(2013), p.4555.

Google Scholar

[9] E. Palleau, M. D. Dickey and O. D. Velev: Soft Matter Vol. 10 (2014), p.1337.

Google Scholar

[10] A. Yasin, H. Li, Z. Lu, S. Rehman, M. Siddiq and H. Yang: Soft Matter Vol. 10 (2014), p.972.

Google Scholar

[11] K. Iseda, K. Kokado, K. Sada: Reactive & Functional Polymers Vol. 73 (2013), p.951.

Google Scholar

[12] F. Zeng, Y. Han, Z. Yan, C. Liu, C. Chen: Polymer Vol. 54 (2013), p.6929.

Google Scholar

[13] M. K. Gupta, T. A. Meyer, Christopher E. Nelson, Craig L. Duvall: Journal of Controlled Release Vol. 162 (2012), p.591.

Google Scholar

[14] G. Liu, C. Zhu, J. Xu, Y. Xin, T. Yang, J. Li, L. Shi, Z. Guo, W. Liu: Colloids and Surfaces B: Biointerfaces Vol. 111 (2013), p.7.

Google Scholar

[15] X. Zhou, L. Che, Y. Wei, Y. Dou, S. Chen, H. He, H. Gong, X. Li, J. Zhang: Acta Biomaterialia Vol. 10 (2014), p.2630.

Google Scholar

[16] J. Li, L. Xu, H. Liu, Y. Wang, Q. Wang, H. Chen, W. Pan, S. Li: International Journal of Pharmaceutics Vol. 467 (2014), p.9.

Google Scholar

[17] B. Mitchinson, M. J. Pearson, A. G. Pipe, T. J. Prescott: Robotics and Autonomous Systems Vol. 62 (2014), p.366.

Google Scholar

[18] Y. Lu, C. Yang, J. Andrew Yeh, F. H. Ho, Y. Ou, C. H. Chen, M. Lin, K. Huang: International Journal of Pharmaceutics Vol. 463 (2014), p.177.

Google Scholar

[19] Y. Shen, P. O. Saboe, I. T. Sines, M. Erbakan, M. Kumar: Journal of Membrane Science Vol. 454(2014), p.359.

DOI: 10.1016/j.memsci.2013.12.019

Google Scholar

[20] S. Garai, A. Sinha: Colloids and Surfaces B: Biointerfaces Vol. 115(2014), p.182.

Google Scholar

[21] T. R. Simmons, G. Berggren, M. Bacchi, M. Fontecave, V. Artero: Coordination Chemistry Reviews Vol. 270–271(2014), p.127.

DOI: 10.1016/j.ccr.2013.12.018

Google Scholar

[22] M. M. Najafpour, S. Heidari, E. Amini, M. Khatamian, R. Carpentier, S. I. Allakhverdiev: Journal of Photochemistry and Photobiology B: Biology Vol. 133 (2014), p.124.

DOI: 10.1016/j.jphotobiol.2014.03.005

Google Scholar

[23] G. Ma, E. Feng, K. Sun, H. Peng, J. Li, Z. Lei : Electrochimica Acta Vol. 135(2014), p.461.

Google Scholar

[24] J. Myoun Koa, J. H. Nama, J. H. Wona, K. M. Kim: Synthetic Metals Vol. 189 (2014), p.152.

Google Scholar

[25] K. M. Kim, J. H. Nam, Y. Lee, W. Cho, J. M. Ko: Current Applied Physics Vol. 13 (2013), p.1702.

Google Scholar

[26] J. E. Benedetti, A. A. Corrêa, M. Carmello, L. C.P. Almeida, A. S. Gonc? alves, Ana F. Nogueira: Journal of Power Sources Vol. 208 (2012), p.263.

Google Scholar

[27] R. Boonsin, J. Sudchanham, N. Panusophon, P. Sae-Heng, C. Sae-Kung, P. Pakawatpanurut: Materials Chemistry and Physics Vol. 132 (2012), p.993.

DOI: 10.1016/j.matchemphys.2011.12.048

Google Scholar

[28] B. Kurc: Electrochimica Acta Vol. 125(2014), p.415.

Google Scholar

[29] J. Ma, M. Yang, Y. Sun, C. Li, Q. Li, F. Gao, F. Yu, J. Chen: Physica E Vol. 58(2014), p.24.

Google Scholar

[30] Y. Qin, Y. Zhou, J. Li, J. Ma, D. Shi, J. Chen, J. Yang: Journal of Colloid and Interface Science Vol. 418(2014), p.171.

Google Scholar

[31] R. Castellani, A. Poulesquen, F. Goettmann, P. Marchal, L. Choplin: Colloids and Surfaces A: Physicochem. Eng. Aspects Vol. 454 (2014), p.89.

DOI: 10.1016/j.colsurfa.2014.04.022

Google Scholar

[32] M. Luka, S. Polarz: Microporous and Mesoporous Materials Vol. 171(2013), p.35.

Google Scholar

[33] M. Singh, N. Nesakumar, S. Sethuraman, U. M. Krishnan, J. B. Balaguru Rayappan: Journal of Colloid and Interface Science Vol. 425 (2014), p.52.

Google Scholar

[34] A. N. Grace, S. Y. Choi, M. Vinoba, M. Bhagiyalakshmi, D. H. Chu, Y. Yoon, S. C. Nam, S. K. Jeong: Applied Energy Vol. 120 (2014), p.85.

DOI: 10.1016/j.apenergy.2014.01.022

Google Scholar

[35] Q. Han, X. Wang, Z. Yang, W. Zhu, X. Zhou, H. Jiang: Talanta Vol. 123(2014), p.101.

Google Scholar

[36] D. Zhao, X. Wan, H. Song, L. Hao, Y. Su, Y. Lv: Sensors and Actuators B Vol. 197 (2014), p.50.

Google Scholar

[37] R.M. Mohamed, E.S. Aazam: Applied Catalysis A: General. Inpress.

Google Scholar

[38] H. Chen, S. Pan, Y. Xiong, C. Peng, X. Pang, L. Li, Y. Xiong, W. Xu: Applied Surface Science Vol. 258(2012), p.9505.

Google Scholar

[39] J. Zhang, C. Su: Coordination Chemistry Reviews Vol. 257(2013), p.1373.

Google Scholar

[40] S. M. Notley, D. R. Evans: Advances in Colloid and Interface Science Vol. 209 (2014), p.196.

Google Scholar

[41] Y. Huang, P. Wu, M. Zhang, W. Ruan, E. P. Giannelis: Electrochimica Acta Vol. 132 (2014), p.103.

Google Scholar

[42] B. Kurc: Electrochimica Acta Vol. 125(2014), p.415.

Google Scholar

[43] A. Vallés-Lluch, E. Costa, G. Gallego Ferrer, M. Monleón Pradas, M. Salmerón-Sánchez: Composites Science and Technology Vol. 70(2010), p.1789.

DOI: 10.1016/j.compscitech.2010.07.008

Google Scholar

[44] C. Spagnol, F. H.A. Rodrigues, A. G.V.C. Neto, A. G.B. Pereira, A. R. Fajardo, E. Radovanovic, A. F. Rubira, E. C. Muniz: European Polymer Journal Vol. 48(2012), p.454.

DOI: 10.1016/j.eurpolymj.2011.12.005

Google Scholar

[45] J. M. Bak, H. Lee: Polymer Vol. 53(2012), p.4955.

Google Scholar

[46] B. Čolovića, V. Jokanovića, B. Jokanović, N. Jović: Ceramics International Vol. 40(2014), p.6949.

Google Scholar

[47] A. Abulizi, G. Yang, J. Zhu : Ultrasonics Sonochemistry Vol. 21(2014), p.129.

Google Scholar

[48] K. Lee, R. Hahn, P. Schmuki: Electrochemistry Communications Vol. 43 (2014), p.105.

Google Scholar

[49] A. Wang, X. Li, Y. Zhao, W. Wu, J. Chen, H. Meng: Powder Technology Vol. 261 (2014), p.42.

Google Scholar

[50] Z. Xi, C. Li, L. Zhang, M. Xing, J. Zhang: international journal o f hydrogen energy Vol. 39(2014), p.6345.

Google Scholar

[51] S. M. Kim, S. M. Lee, Y. C. Bae: European Polymer Journal Vol. 54 (2014), p.151.

Google Scholar

[52] G. Fichman, E. Gazit: Acta Biomaterialia Vol. 10 (2014), p.1671.

Google Scholar

[53] X. Ma, M. Wang, G. Li, H. Chen, and R. Bai: Materials Chemistry and Physics Vol. 98 (2006), p.241.

Google Scholar

[54] Q. Cong, X. He, M. Gao, X. Ma, Guang Li: Materials Research Innovation Vol. 18(2014), p. S740.

Google Scholar

[55] X. Ma, G. Li, M. Wang, Y. Cheng, R. Bai and H. Chen: Chemistry-A European Journal Vol. 12 (2006), p.3254.

Google Scholar

[56] Q. Cong, H. Geng, X. He, M. Gao, X. Ma, G. Li: Materials Research Innovations Vol. 18(2014), p. S30.

Google Scholar

[57] X. Ma, M. Gao, X. He, and G. Li: Recent Patents of Nanotechnology Vol. 4(2010), p.150.

Google Scholar

[58] X. Ma, A. Liu, H. Xu, G. Li: Colloid and Polymer Science Vol. 285 (2007), p.1631.

Google Scholar

[59] X. Ma, H. Xu, G. Li, M. Wang, H. Chen, and S. Chen: Macromolecular Materials and Engineering Vol. 291(2006), p.1539.

Google Scholar