[1]
V.K. Shankar, B.S. Rao, S.L. Mannan, et al. Microstructure and mechanical properties of Inconel 625 superalloy[J]. Journal of nuclear materials, 2001, 288: 222-232.
DOI: 10.1016/s0022-3115(00)00723-6
Google Scholar
[2]
F.J. Xu, Y.H. Lv, Y.X. Liu, et al. Microstructural evolution and mechanical properties of Inconel 625 alloy during plused plasma arc deposition process[J]. Journal of materials science and technology, 2013, 29(5): 480-488.
DOI: 10.1016/j.jmst.2013.02.010
Google Scholar
[3]
S.K. Rai, A. Kumar, V. Shankar, et al. Characterization of microstructures in Inconel 625 using X-ray diffraction peak broadening and lattice parameter measurements [J]. Scripta materialia, 2004, 51: 59-63.
DOI: 10.1016/j.scriptamat.2004.03.017
Google Scholar
[4]
Z.G. Wu, D.F. Li. Hot compression deformation behaviors and microstructure evolution of GH625 Ni-based alloy[J]. The Chinese journal of nonferrous metals, 2012, 20(7): 1321-1327.
Google Scholar
[5]
H.T. Zhou, Z.C. Liu, S.F. Wen, et al. Dynamic recrystallization behavior of GH625 superalloy during hot deformation[J]. Rare metal materials and engineering, 2012, 41(11): 1917-(1922).
Google Scholar
[6]
G.K. Mandal, N. Stanford, P. Hodgson, et al. Static recrystallization study of as-cast austenitic stainless steel[J]. Materials Science & Engineering A, 2013, 576: 118-125.
DOI: 10.1016/j.msea.2013.03.076
Google Scholar
[7]
M.R. Jahangirl, H. Arabi, S.M. Boutorabi. High-temperature compression behavior of cast and homogenized IN939 superalloy[J]. Metallugical and materials transactions A, 2013, 44: 1827- 1841.
DOI: 10.1007/s11661-012-1538-1
Google Scholar
[8]
C.C. Silva, H.C. Miranda, M.F. Motta, et al. New insight on the solidification path of an alloy 625 weld overlay[J]. Journal of materials research and technology, 2013, 2(3): 228-237.
DOI: 10.1016/j.jmrt.2013.02.008
Google Scholar
[9]
X.L. Pan, W.R. Sun, Z. Li, et al. Solidification characteristics and dendritic segregation of as-cast GH742 alloy[J]. Rare metal materials and engineering, 2010, 39(1): 55-59.
Google Scholar
[10]
D.F. Li, Q.M. Guo, S.L. Guo, et al. The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy[J]. Materials and design, 2011, 32: 696-705.
DOI: 10.1016/j.matdes.2010.07.040
Google Scholar
[11]
T. Sakai, A. Belyakov, R. Kaidyshev, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions[J]. Progress in materials science, 2014, 60: 130-207.
DOI: 10.1016/j.pmatsci.2013.09.002
Google Scholar
[12]
S. Mitsche, C. Sommitsch, D. Huber, et al. Assessment of dynamic softening mechanisms in Allvac 718Plus by EBSD analysis[J]. Materials science and engineering A, 2011, 528: 3754-3760.
DOI: 10.1016/j.msea.2011.01.044
Google Scholar
[13]
H.T. Huang, G. Andrew, W. Liu, et al. Effect of sample orientation on static recrystallization of AZ31 magnesium alloy[J]. Acta metallurgica sinica, 2012, 48(8): 915-921.
DOI: 10.3724/sp.j.1037.2012.00159
Google Scholar
[14]
X. Li, P. Yang, L. Meng, et al. Analysis of the static recrystallization at tension twins in AZ31 magnesium alloy[J]. Acta metallurgica sinica, 2010, 46(2): 147-157.
DOI: 10.3724/sp.j.1037.2009.00533
Google Scholar
[15]
S. Xia, X. Luo, B.X. Zhou. et al. The relationship of grain-cluster microstructure and grain boundary characteristic distribution in 304 stainless steel[J]. Journal of Chinese electron microscopy society, 2010, 29(1): 678-683.
Google Scholar
[16]
J.Q. Wu, K. Chen, X.F. Chen, et al. Application of EBSD in the study of dynamic recrystallization mechanisms in Nimonic 80A[J]. Journal of Chinese microscopy society, 2011, 30(4): 356-359.
Google Scholar
[17]
H.J. Mcqueen. Development of dynamic recrystallization theory[J]. Materials science and engineering A, 2004, 387: 203-208.
Google Scholar
[18]
S.W. Xu, S. Kamado, N. Matsumoto. Recrystallization mechanism of as-cast AZ91 magnesium alloy during hot compressive deformation[J]. Materials science and engineering A, 2009, 527: 52-60.
DOI: 10.1016/j.msea.2009.08.062
Google Scholar