[1]
Wang Guo-dong, The new generation TMCP with the key technology of the ultra-fast cooling, Shanghai Metals. 30(2008) 1-4.
Google Scholar
[2]
Hiroshi Kagechika, Production and technology of iron and steel in Japan during 2005. ISIJ International. 46(2006) 939-958.
DOI: 10.2355/isijinternational.46.939
Google Scholar
[3]
Simon P, Fishbach J. P, Riche P, Ultra-fast cooling on the run-out table of the hot strip mill, Revue de Metallurgie. 93(1996) 409-415.
Google Scholar
[4]
A. Lucas, P. Simon, G. Bourdon, J.C. Herman, Metallurgical aspects of ultra-fast cooling in front of the down-coiler, Steel Research. 75(2004) 139-146.
DOI: 10.1002/srin.200405939
Google Scholar
[5]
Fujibayashi A, Omata K, JFE steel's advanced manufacturing technologies for high performance steel plates, JFE Technical Report. 5(2005) 10.
Google Scholar
[6]
Wang Guo-dong, New generation TMCP and innovative hot Rolling process, Journal of Northeastern University: Natural Science. 30(2009) 913-922.
Google Scholar
[7]
D.A. Zumbrunnem, F.P. Incropera, R. Viskanta, A laminar boundary layer model of heat transfer due to a nonuniform planar jet impinging on a moving plate, Warm-und Stoffubertragung. 27(1992) 311-319.
DOI: 10.1007/bf01589969
Google Scholar
[8]
Y. Shi, M. Ray, A. Mujumdar, Computational study of impingement heat transfer under a turbulent slot jet, Ind. Eng. Chem. Res. 41(2002) 4643-4651.
DOI: 10.1021/ie020120a
Google Scholar
[9]
Tong A. Y, On the impingement heat transfer from an oblique free surface plan jet, Int J Heat Mass Transfer. 46 (2003) (2077).
DOI: 10.1016/s0017-9310(02)00505-7
Google Scholar
[10]
D. Sahoo, M. Sharif, Numerical modeling of slot-jet impingement cooling of a constant heat flux surface confined by a parallel wall, Int. J. Therm. Sci. 43(2004) 877-887.
DOI: 10.1016/j.ijthermalsci.2004.01.004
Google Scholar
[11]
YIN Zhao-qin, ZHANG Hong-jun, LIN Jian-zhong, Experimental study on the flow field characteristics in the mixing region of twin jets, Journal of Hydrodynamics. 19(2007) 309-313.
DOI: 10.1016/s1001-6058(07)60063-8
Google Scholar
[12]
Miao Jr-ming, Wu Chen-yuan, Chen Ping-hei, Numerical investigation of confined multiple-jet impingement cooling over a flat plate at different crossflow orientaions, Numerical Heat Transfer. 55(2009) 1019-1050.
DOI: 10.1080/10407780903014335
Google Scholar
[13]
Andreini Antonio, Da Soghe Riccardo, Facchini Bruno, Experimental and numerical analysis of multiple impingement jet arrays for an active clearance control system, Journal of Turbomachinery, 135 (2013) 031016.
DOI: 10.1115/1.4007481
Google Scholar
[14]
P.R. Parida, S.V. Ekkad, K. Ngo, Experimental and numerical investigation of confined oblique impingement configurations for high heat flux applications, Int. J. Therm. Sci. 50(2011) 1037-1050.
DOI: 10.1016/j.ijthermalsci.2011.01.010
Google Scholar
[15]
Gulati Puneet, Katti Vadiraj, Prabhu S. V, Influence of the shape of the nozzle on local heat transfer distribution between smooth flat surface and impinging air jet, International Journal of Thermal Sciences. 48(2009) 602-617.
DOI: 10.1016/j.ijthermalsci.2008.05.002
Google Scholar
[16]
C. Nuntadusit, M. Wae-hayee, A. Bunyajitradulya, Heat transfer enhancement by multiple swirling impinging jets with twisted-tape swirl generators, International Communications in Heat and Mass Transfer, 39(2012) 102-107.
DOI: 10.1016/j.icheatmasstransfer.2011.10.003
Google Scholar
[17]
Benmouhoub Dahbia, Mataoui Amina, urbulent heat transfer from a slot jet impinging on a flat plate , Journal of Heat Transfer. 135 (2013) 102201: 1-9.
DOI: 10.1115/1.4024554
Google Scholar