[1]
Y. Wang, Y.X. Zhou, Y.M. Xia, A constitutive description of tensile behavior for brass over a wide range of strain rates, Mater. Sci. Eng. A 372 (2004) 186-190.
DOI: 10.1016/j.msea.2003.12.009
Google Scholar
[2]
M.A. Meyers, Dynamic behavior of materials, John Wiley & Sons Inc., (1994).
Google Scholar
[3]
S. Nemat-Nasser, J.B. Isaacs, M.Q. Liu, Microstructure of high-strain, high-strain-rate deformed tantalum, Acta Mater. 46 (1998) 1307-1325.
DOI: 10.1016/s1359-6454(97)00746-5
Google Scholar
[4]
L. Tang, Z.Y. Chen, C.K. Zhan, X.Y. Yang, C.M. Liu, H.N. Cai, Microstructural evolution in adiabatic shear bands of copper at high strain rates: Electron backscatter diffraction characterization, Mater. Charact. 64 (2012) 21-26.
DOI: 10.1016/j.matchar.2011.11.011
Google Scholar
[5]
B.K. Kad, J.M. Gebert, M.T. Pérez-Prado, M.E. Kassner, M.A. Meyers, Ultrafine-grain-sized zirconium by dynamic deformation, Acta Mater. 54 (2006) 4111-4127.
DOI: 10.1016/j.actamat.2006.03.053
Google Scholar
[6]
U. Andrade, M.A. Meyers, K.S. Vecchio, A.H. Chokshi, Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper, Acta Metall. Mater. 42 (1994) 3183-3195.
DOI: 10.1016/0956-7151(94)90417-0
Google Scholar
[7]
B. Zhang, V.P.W. Shim, Effect of strain rate on microstructure of polycrystalline oxygen-free high conductivity copper severely deformed at liquid nitrogen temperature, Acta Mater. 58 (2010) 6810-6827.
DOI: 10.1016/j.actamat.2010.09.009
Google Scholar
[8]
F. Yazdani, M.N. Bassim, A.G. Odeshi, The formation of adiabatic shear bands in copper during torsion at high strain rates, Procedia Engineering 1 (2009) 225-228.
DOI: 10.1016/j.proeng.2009.06.053
Google Scholar
[9]
M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Pérez-Prado, T.R. McNelley, Microstructural evolution in adiabatic shear localization in stainless steel, Acta Mater. 51 (2003) 1307-1325.
DOI: 10.1016/s1359-6454(02)00526-8
Google Scholar
[10]
M. Baig, A.S. Khan, S.H. Choi, A. Jeong, Shear and multiaxial responses of oxygen free high conductivity (OFHC) copper over wide range of strain-rates and temperatures and constitutive modeling, International Journal of Plasticity 40 (2013).
DOI: 10.1016/j.ijplas.2012.07.004
Google Scholar
[11]
G.R. Johnson, W.H. Cook, Proc. 7th Int. Symp. On Ballistics, ADPA, The Netherlands, (1983).
Google Scholar
[12]
M.A. Meyers, U.R. Andrade, A.H. Chokshi, The Effect of Grain Size on the High-Strain, High-Strain-Rate Behavior of Copper, Metall. Mater. Trans. A 26 (1995) 2881-2893.
DOI: 10.1007/bf02669646
Google Scholar
[13]
A. Mishra, M. Martin, N.N. Thadhani, B.K. Kad, E.A. Kenik, M.A. Meyers, High-strain-rate response of ultra-fine-grained copper, Acta Mater. 56 (2008) 2770-2783.
DOI: 10.1016/j.actamat.2008.02.023
Google Scholar
[14]
T.G. Tang, C.L. Liu, On the constitutive model for oxygen-free high-conductivity copper under high strain-rate tension, Explosion and Shock Waves 33 (2013) 581-586.
Google Scholar
[15]
U. Hofmann, E. El-Magd, Behaviour of Cu-Zn alloys in high speed shear tests and in chip formation processes, Mater. Sci. Eng. A 395 (2005) 129-140.
DOI: 10.1016/j.msea.2004.12.030
Google Scholar
[16]
Y. Wang, Y.M. Xia, Modeling of mechanical behavior of brass at high strain rates, J. Mater. Sci. Lett. 22 (2003) 1393-1394.
Google Scholar
[17]
S.V. Petegem, J. Zimmermann, H. VanSwygenhoven, Yield point phenomenon during strain rate change in nanocrystalline Ni–Fe, Scrip. Mater. 65 (2011) 217-220.
DOI: 10.1016/j.scriptamat.2011.04.007
Google Scholar
[18]
S. Cronje, R. E Kroon, W.D. Roos, J.H. Neethling, Twinning in copper deformed at high strain rates, Bull. Mater. Sci. 36 (2013) 157-162.
DOI: 10.1007/s12034-013-0445-4
Google Scholar