[1]
J.H. Liu, G.X. Wang, et al, Inclusion Variations of Hot Working Die Steel H13 in Refining Process, Journal of Iron and Steel Research, International. 19(2012) 1-7.
DOI: 10.1016/s1006-706x(13)60012-6
Google Scholar
[2]
D. Papageorgiou, C. Medrea, N. Kyriakou, Failure analysis of H13 working die used in plastic injection moulding, Engineering Failure Analysis. 35(2013) 355-359.
DOI: 10.1016/j.engfailanal.2013.02.028
Google Scholar
[3]
S. Jhavar, C.P. Paul, N.K. Jain, Causes of failure and repairing options for dies and molds: A review, Engineering Failure Analysis. 34(2013) 519–535.
DOI: 10.1016/j.engfailanal.2013.09.006
Google Scholar
[4]
Klobčar D, Tušek J, Taljat B, Thermal fatigue of materials for die-casting tooling, Materials Science and Engineering: A. 472(2008) 198-207.
DOI: 10.1016/j.msea.2007.03.025
Google Scholar
[5]
Lavtar L, Muhič T, Kugler G, Terčelj M, Analysis of the main types of damage on a pair of industrial dies for hot forging car steering mechanisms. Engineering Failure Analysis. 18(2011) 1143-1152.
DOI: 10.1016/j.engfailanal.2010.11.002
Google Scholar
[6]
B.S. Xu, Jun Tan, J.M. Chen, Science and Technology Development of Surface Engineering, China Surface Engineering. 02(2011) 1-12.
Google Scholar
[7]
Fazarinc M, Muhič T, Kugler G, Terčelj M, Thermal fatigue properties of differently constructed functionally graded materials aimed for refurbishing of pressure-die-casting dies, Engineering Failure Analysis. 25(2012) 238-249.
DOI: 10.1016/j.engfailanal.2012.05.016
Google Scholar
[8]
D.L. Cong, Zhou Hong, et al, The thermal fatigue resistance of H13 steel repaired by a biomimetic laser remelting process, Materials & Design. 55(2014) 597-604.
DOI: 10.1016/j.matdes.2013.09.076
Google Scholar
[9]
G. Telasang, J. Dutta Majumdar, G. Padmanabham, I. Manna, Structure–property correlation in laser surface treated AISI H13 tool steel for improved mechanical properties, Materials Science and Engineering: A. (559)2014 255-267.
DOI: 10.1016/j.msea.2014.01.083
Google Scholar
[10]
Chang Shihhsien, Lin Yukai, Huang Kuotsung, Study on the thermal erosion, wear and corrosion behaviors of TiAlN/oxynitriding duplex-treated AISI H13 alloy steel, Surface and Coatings Technology. 207(2012) 571-578.
DOI: 10.1016/j.surfcoat.2012.07.080
Google Scholar
[11]
Nurşen Saklakoğlu, Characterization of surface mechanical properties of H13 steel implanted by plasma immersion ion implantation, Journal of Materials Processing Technology. 189(2007) 367-373.
DOI: 10.1016/j.jmatprotec.2007.02.014
Google Scholar
[12]
J.X. Zou , A.M. Wu, et al, Oxidation protection of AISI H13 steel by high current pulsed electron beam treatment, Surface and Coatings Technology. 183(2004) 261-267.
DOI: 10.1016/j.surfcoat.2003.08.087
Google Scholar
[13]
Kai Weigel, Klaus Bewilogua, et al, Effects of electron beam treatment on Ti(1−x)AlxN coatings on steel, Vacuum. 107(2014) 141-144.
DOI: 10.1016/j.vacuum.2014.04.023
Google Scholar
[14]
P.L. Ge, M.D. Bao, et al , Effect of plasma nitriding on adhesion strength of CrTiAlN coatings on H13 steels by closed field unbalanced magnetron sputter ion plating, Surface and Coatings Technology. 229(2013) 146-150.
DOI: 10.1016/j.surfcoat.2012.08.002
Google Scholar
[15]
Zhu Ran. Studies on high-temperature oxidation and its influence mechanism of Fe-Cr-Al alloy. Shenyang: Shenyang Normal University, 2013: 22-24.
Google Scholar
[16]
D.Y. Li, S.G. E, Z.L. Zhang, et al, High temperature antioxidation mechanism of arc-sprayed Fe-Cr-Al/Al composite coatings, Journal of Shenyang University of Technology. 31(2009) 292-295.
Google Scholar
[17]
S.Z. Hao, L.M. Zhao, D.Y. He, Surface microstructure and high temperature corrosion resistance of arc-sprayed FeCrAl coating irradiated by high current pulsed electron beam, Nuclear Instruments and Methods in Physics Research B. 312(2013) 97–103.
DOI: 10.1016/j.nimb.2013.07.015
Google Scholar