[1]
G. Lu, T. Xuan, Development tendency and research progress of the electronic paste, Metallic Funct. Mater. 15 (2008) 48-52.
Google Scholar
[2]
W. Gao, G. Zhang, Y. Luo, W. Han, Z. Yang, Research and application of lead-free passivation glass materials, Electron. Compon. Mater. 25 (2006) 63-65.
Google Scholar
[3]
Q. Liu, M. Ren, Z. Liu, J. Xu, X. Wang, N. Liu, Study and market of front-side silver paste for silicon solar cell, Inform. Rec. Mater. 13 (2012) 39-46.
Google Scholar
[4]
S. Ding, X. Yu, J. Tian, Y. Tao, J. Zhejiang Metall. 3 (2010) 1-5.
Google Scholar
[5]
M.M. Hilali, S. Sridharan, C. Khadilkar, A. Shaikh, A. Rohatgi, S. Kim, Effect of glass frit chemistry on the physical and electrical properties of thick-film Ag contacts for silicon solar cell, J. Electron. Mater. 35 (2006) 2041-(2047).
DOI: 10.1007/s11664-006-0311-x
Google Scholar
[6]
M. Jakubowska, M. Jarosz, K. Kielbasinski, A. Mlozniak, New conductive thick-film paste based on silver nanopowder for high power and high temperature applications, Microelectron. Reliab. 51 (2011) 1235-1240.
DOI: 10.1016/j.microrel.2011.04.015
Google Scholar
[7]
Y.N. Ko, H.Y. Koo, J.H. Yi, J.H. Kim, Y.C. Kang, Characteristics of Pb-based glass frit prepared by spray pyrolysis as the inorganic binder of silver electrode for Si solar cells, J. Alloy. Compd. 490 (2010) 582-588.
DOI: 10.1016/j.jallcom.2009.10.091
Google Scholar
[8]
W. Gan, H. Zhou, J. Zhang, Investigation of sintering process and electrical conductivity of the lead-free Ag paste, Electron. Compon. Mater. Vol. 29 (2010), pp.65-69.
Google Scholar
[9]
W. Gan, J. Li, N. Zhu, F. Xiang, G. Guo, Z. Chen, Preparation of glass frit for front silver paste of crystalline silicon solar cell, Mater. Rev. B 25 (2011) 1-4.
Google Scholar
[10]
H. Wu, Q. Dong, D. Wang, Properties research for glass powder in silver paste of solar cell, Ningxia Eng. Tech. 8, (2009) 115-116.
Google Scholar
[11]
Y.N. Ko, H.Y. Koo, D.S. Jung, J.H. Kim, Y.C. Kang, Characteristics of the glass powders with low Pb content directly prepared by spray pyrolysis, J. Alloy. Compd. 502 (2010) 158-162.
DOI: 10.1016/j.jallcom.2010.04.133
Google Scholar
[12]
P. Chen, S. Li, Y. He, Thermal property of bismuth oxide low-melting glass powder, Trans. Mater. Heat Treat. 31 (2010) 48-51.
Google Scholar
[13]
W. Qiao, P. Chen, Y. He, X. Chen, Study on the properties of Bi2O3-B2O3 lead-free glass powder used in electronic pastes, Electron. Compon. Mater. 28 (2009) 53-56.
Google Scholar
[14]
B. Xu, J. Cao, K. Liang, Influence of CaO and ZnO content on the crystallization and foaming of CaO-Al2O3-SiO2 glass-ceramics, J. Inorg. Mater. 27 (2012) 191-194.
DOI: 10.3724/sp.j.1077.2012.00191
Google Scholar
[15]
P. Shi, M. Jiang, C. Liu, D. Wang, Effect of CaO on crystallization behavior of CaO-Al2O3-SiO2 system glass ceramics, J. Northeastern Univ., 25 (2004) 866-869.
Google Scholar
[16]
R. Zhang, D. Chen, D. Yang, Foundation of Glass Manufacturing Technology, Chemical Industry Press, Beijing, (2009).
Google Scholar
[17]
R. Kirchheim, The mixed alkali effect as a consequence of network density and site energy distribution, J. Non-Cryst. Solids 272 (2000) 85-102.
DOI: 10.1016/s0022-3093(00)00165-4
Google Scholar
[18]
Q. Jin, X. Wang, Z. Yang, Y. Tong, L. Zhu, J. Ma, Influence of La2O3 and Li2O on glass powder for infiltrating ZTA all-ceramic dental material formed by gel-casting, Shanghai J. Stomat. 21 (2012) 488-494.
Google Scholar
[19]
G. Chen, Effect of ZnO on structure and properties of MgO-A12O3-SiO2 system glass, Chin. J. Nonferrous Met. 16 (2006) 1902-(1907).
Google Scholar