[1]
M.X. Guo, K. Shen, M. P. Wang , Relationship between microstructure, properties and reaction conditions for Cu-TiB2 alloys prepared by in situ reaction, Acta Mater. 57(2009) 4568-4579.
DOI: 10.1016/j.actamat.2009.06.030
Google Scholar
[2]
Q. Zhang, B.L. Xiao, W.G. Wang , Reactive mechanism and mechanical properties of in situ composites fabricated from an Al-TiO2 system by friction stir processing , Acta Mater. 60(2012) 7090-7103.
DOI: 10.1016/j.actamat.2012.09.016
Google Scholar
[3]
X.H. Zhang, M.H. Yu, H.Q. Tang, Effect of copper addition on microstructures and mechanical properties of in situ TiCp/Fe composites, Mater. Des. 32 (2011) 3560-3565.
DOI: 10.1016/j.matdes.2011.01.026
Google Scholar
[4]
S. Kumar, V.S. Sarma, B.S. Murty, High temperature wear behavior of Al-4Cu-TiB2 in situ composites, Wear, 268(2010) 1266-1274.
DOI: 10.1016/j.wear.2010.01.022
Google Scholar
[5]
Gavgali, Mehmet, Dikici, The effect of SiCp reinforcement on the corrosion behaviour of Al based metal matrix composites. Corros. Rev, 24(2006) 27-37.
DOI: 10.1515/corrrev.2006.24.1-2.27
Google Scholar
[6]
I.B. Singh, D.P. Mandal, M. Singh, Influence of SiC particles addition on the corrosion behavior of 2014 Al-Cu alloy in 3. 5% NaCl solution, Corros. Sci. 51 (2009) 234-241.
DOI: 10.1016/j.corsci.2008.11.001
Google Scholar
[7]
H.H. Sun, X.F. Li, J. Chen, Enhanced corrosion resistance of discontinuous anodic film on in situ TiB2p/A356 composite by cerium electrolysis treatment, Mater. Sci. 44 (2009) 786-793.
DOI: 10.1007/s10853-008-3133-9
Google Scholar
[8]
T.J. Chen, J. Li, Y. Hao, Microstructures and corrosion properties of casting in situ Al3Ti-Al composites, Rare Metals, 29 (2010) 78-85.
DOI: 10.1007/s12598-010-0014-6
Google Scholar
[9]
S. Kumar, V.S. Sarma , B.S. Murty, A statistical analysis on erosion wear behaviour of A356 alloy reinforced with in situ formed TiB2 particles, Mater. Sci. Eng. A. 476 (2008) 333-340.
DOI: 10.1016/j.msea.2007.04.113
Google Scholar
[10]
D. Takács, L. Sziráki, T.I. Török , Microstructures and corrosion properties of casting in situ Al3Ti-Al composites, Surf. Coat. Technol. 201 (2007) 4526-4535.
Google Scholar
[11]
L.B. Li, M.Z. An, Electroless nickel–phosphorus plating on SiCp/Al composite from acid bath with nickel activation, J. Alloys Compd. 461 (2008) 85-91.
DOI: 10.1016/j.jallcom.2007.06.126
Google Scholar
[12]
L.B. Li, M.Z. An, G.H. Wu, A new electroless nickel deposition technique to metallise SiCp/Al composites, Surface & Coatings Technology, 200 (2006) 5102-5112.
DOI: 10.1016/j.surfcoat.2005.05.031
Google Scholar
[13]
Y.F. Liang, J.E. Zhou, S.Q. Dong, Microstructure and tensile properties of in situ TiCp/Al-4. 5wt. %Cu composites obtained by direct reaction synthesis, Mater. Sci. Eng. A. 527 (2010) 7955-7960.
DOI: 10.1016/j.msea.2010.08.098
Google Scholar
[14]
C.N. Panagopoulos, E.P. Georgiou, Surface mechanical behaviour of composite Ni-P-fly ash zincate coated aluminium alloy, Appl. Surf. Sci. 255 (2009) 6499-6503.
DOI: 10.1016/j.apsusc.2009.02.026
Google Scholar
[15]
H. Zhao, Z.H. Huang, J.Z. Cui, A new method for electroless Ni-P plating on AZ31 magnesium alloy GB/T 9286–1998 (eqv ISO 2409), Paints and Varnishes-Cross Cut Test for films, Surf. Coat. Technol. 202 (2007) 133-139.
DOI: 10.1016/j.surfcoat.2007.05.001
Google Scholar
[16]
N. Li, G.W. Yuan , D.Y. Li, Theory and Technique of Electroless Nickel and its Alloy, Harbin Institute of Technology Press, (2000).
Google Scholar
[17]
N.E. Mahallawy, A. Bakkar, M. Shoeib, Electroless Ni-P coating of different magnesium alloys, Surf. Coat. Technol. 202 (2008) 5151-5112.
DOI: 10.1016/j.surfcoat.2008.05.037
Google Scholar
[18]
J. Guo, Y. Liu, The modification of electroless deposited Ni-P master alloy for hypereutectic Al–Si alloy, J. Alloys Compd. 495 (2010) 45-49.
DOI: 10.1016/j.jallcom.2010.02.012
Google Scholar
[19]
Y.H. Cheng, Y. Zou , L. Cheng , Effect of the microstructure on the anti-fouling property of the electroless Ni-P coating, Mater. Lett. 62 (2008) 4283-4285.
DOI: 10.1016/j.matlet.2008.07.002
Google Scholar