[1]
L. Klaus-Dieter, B. Arno, C. Helmut, B. Slawomir, S. Andreas, B. Thomas, S. Frank-Peter, G. Rainer, S. Christina, S. Andreas, Recrystallization and phase transitions in a γ-TiAl-based alloy as observed by ex-situ and in-situ high-energy X-ray diffraction, Acta Materialia. 54 (2006).
DOI: 10.1016/j.actamat.2006.04.004
Google Scholar
[2]
X.J. Xu, L.H. Xu, J.P. Lin, Y.L. Wang, Z. Lin, G.L. Chen, Pilot processing and microstructure control of high Nb containing TiAl alloy, Intermetallics. 13 (2005) 337-341.
DOI: 10.1016/j.intermet.2004.07.007
Google Scholar
[3]
X.J. Xu, J.P. Lin, Z.K. Teng, Y.L. Wang, G.L. Chen, On the microsegregation of Ti-45Al-(8-9) Nb-(W, B, Y) alloy, Materials Letters. 61 (2007) 369-373.
DOI: 10.1016/j.matlet.2006.04.115
Google Scholar
[4]
R. Yang, Y.Y. Cui, L.M. Dong, Q. Jia, Alloy development and shell mould casting of gamma TiAl, Journal of materials processing technology. 135 (2003) 179-188.
DOI: 10.1016/s0924-0136(02)00873-7
Google Scholar
[5]
L.I. Duarte, A.S. Ramos, M.T. Vieira, F. Viana, M. Vieira, M. Koçak, Solid-state diffusion bonding of gamma-TiAl alloys using Ti/Al thin films as interlayers, Intermetallics. 14 (2006) 1151-1156.
DOI: 10.1016/j.intermet.2005.12.011
Google Scholar
[6]
X.F. Wang, M. Ma, X.B. Liu, X.Q. Wu, C.G. Tan, R.K. Shi, J.G. Lin, Diffusion bonding of γ-TiAl alloy to Ti-6A1-4V alloy under hot pressure, Transactions of Nonferrous Metals Society of China. 16 (2006) 1059-1063.
DOI: 10.1016/s1003-6326(06)60377-4
Google Scholar
[7]
C. Helmut, K. Heinrich, Processing and Applications of Intermetallic γ-TiAl-Based Alloys, Advanced Engineering Materials. 2 (2000) 551-570.
Google Scholar
[8]
P. He, L. Fan, H. Liu, J.C. Feng, Effects of hydrogen on diffusion bonding of TiAl-based intermetallics using hydrogenated Ti-6Al-4V interlayer, International Journal of Hydrogen Energy. 35 (2010) 13317-13321.
DOI: 10.1016/j.ijhydene.2010.09.040
Google Scholar
[9]
G. Çm, H. Clemens, R. Gerling ,M. Kocak, Diffusion bonding of γ-TiAl sheets, Intermetallics. 7 (1999) 1025-1031.
DOI: 10.1016/s0966-9795(99)00012-6
Google Scholar
[10]
G. Cam, M. Koçak, Diffusion bonding of investment cast γ-TiAl, Journal of materials science. 34 (1999) 3345-3354.
Google Scholar
[11]
J.T. Xiong, Q. Xie, J.L. Li, F.S. Zhang, W.D. Huang, Diffusion bonding of stainless steel to copper with tin bronze and gold Interlayers, Journal of materials engineering and performance. 21 (2012) 33-37.
DOI: 10.1007/s11665-011-9870-y
Google Scholar
[12]
S. Simões, F. Viana, M. Koçak, A. S. Ramos, M. T. Vieira, M. F. Vieira, Microstructure of reaction zone formed during diffusion bonding of TiAl with Ni/Al multilayers, Journal of materials engineering and performance. 21(2012) 678-682.
DOI: 10.1007/s11665-012-0144-0
Google Scholar
[13]
L.I. Duarte, F. Viana, A.S. Ramos, M.T. Vieira, C. Leinenbach, U.E. Klotz, M.F. Vieira, Diffusion bonding of gamma-TiAl using modified Ti/Al nanolayers, Journal of Alloys and Compounds. 536 (2012) s424-s427.
DOI: 10.1016/j.jallcom.2011.12.037
Google Scholar
[14]
Y. Nakao, K. Shinozaki, M. Hamada, Diffusion bonding of intermetallic compound TiAl, ISIJ international. 31 (1991) 1260-1266.
DOI: 10.2355/isijinternational.31.1260
Google Scholar
[15]
D. Herrmann, F. Appel, Diffusion bonding of γ (TiAl) alloys: influence of composition, microstructure, and mechanical properties, Metallurgical and Materials Transactions A. 40 (2009) 1881-(1902).
DOI: 10.1007/s11661-009-9878-1
Google Scholar
[16]
W.J. Zhang, Z.C. Liu, G.L. Chen, Y.W. Kim, Deformation mechanisms in a high-Nb containing γ–TiAl alloy at 900° C, Materials Science and Engineering: A. 271 (1999) 416-423.
DOI: 10.1016/s0921-5093(99)00313-5
Google Scholar
[17]
X.J. Xu, J.P. Lin, Y.L. Wang, J.F. Gao, Z. Lin, G.L. Chen, Effect of forging on microstructure and tensile properties of Ti-45Al-(8–9) Nb-(W, B, Y) alloy, Journal of Alloys and Compounds. 414 (2006), 175-180.
DOI: 10.1016/j.jallcom.2005.03.121
Google Scholar
[18]
Z.C. Liu, J.P. Lin, S.J. Li, G.L. Chen, Effects of Nb and Al on the microstructures and mechanical properties of high Nb containing TiAl base alloys, Intermetallics. 10 (2002) 653-659.
DOI: 10.1016/s0966-9795(02)00037-7
Google Scholar