Microstructure Evolution at the Diffusion Bonding Interface of High Nb Containing TiAl Alloy

Article Preview

Abstract:

A series of diffusion bonding tests were conducted on high Nb containing TiAl alloy with duplex microstructure, the evolution of microstructure at bonding interface was investigated. Bonding process was performed by using vacuum hot press furnace at the temperature range from 850 to 1150°C with the pressure of 30MPa for 45min. The microstructure observation indicates that sound joint without unbounded area can be obtained when bonded above 950°C. Recrystallization happens in bonding interface when bonded at 1150°C and the recrystallized grain prior nucleated at bonding interface between the lamella colonies. Nucleation and growth of recrystallized grains promote migration of bonding interface and thus improve bonding quality. Besides, the post-bonding heat treatment (PBHT) was also performed to promote the evolution of bonding interface. The experimental results reveal that the bonding interface disappears after PBHT at 1135°Cfor 12h, and exhibits near gamma microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

599-603

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Klaus-Dieter, B. Arno, C. Helmut, B. Slawomir, S. Andreas, B. Thomas, S. Frank-Peter, G. Rainer, S. Christina, S. Andreas, Recrystallization and phase transitions in a γ-TiAl-based alloy as observed by ex-situ and in-situ high-energy X-ray diffraction, Acta Materialia. 54 (2006).

DOI: 10.1016/j.actamat.2006.04.004

Google Scholar

[2] X.J. Xu, L.H. Xu, J.P. Lin, Y.L. Wang, Z. Lin, G.L. Chen, Pilot processing and microstructure control of high Nb containing TiAl alloy, Intermetallics. 13 (2005) 337-341.

DOI: 10.1016/j.intermet.2004.07.007

Google Scholar

[3] X.J. Xu, J.P. Lin, Z.K. Teng, Y.L. Wang, G.L. Chen, On the microsegregation of Ti-45Al-(8-9) Nb-(W, B, Y) alloy, Materials Letters. 61 (2007) 369-373.

DOI: 10.1016/j.matlet.2006.04.115

Google Scholar

[4] R. Yang, Y.Y. Cui, L.M. Dong, Q. Jia, Alloy development and shell mould casting of gamma TiAl, Journal of materials processing technology. 135 (2003) 179-188.

DOI: 10.1016/s0924-0136(02)00873-7

Google Scholar

[5] L.I. Duarte, A.S. Ramos, M.T. Vieira, F. Viana, M. Vieira, M. Koçak, Solid-state diffusion bonding of gamma-TiAl alloys using Ti/Al thin films as interlayers, Intermetallics. 14 (2006) 1151-1156.

DOI: 10.1016/j.intermet.2005.12.011

Google Scholar

[6] X.F. Wang, M. Ma, X.B. Liu, X.Q. Wu, C.G. Tan, R.K. Shi, J.G. Lin, Diffusion bonding of γ-TiAl alloy to Ti-6A1-4V alloy under hot pressure, Transactions of Nonferrous Metals Society of China. 16 (2006) 1059-1063.

DOI: 10.1016/s1003-6326(06)60377-4

Google Scholar

[7] C. Helmut, K. Heinrich, Processing and Applications of Intermetallic γ-TiAl-Based Alloys, Advanced Engineering Materials. 2 (2000) 551-570.

Google Scholar

[8] P. He, L. Fan, H. Liu, J.C. Feng, Effects of hydrogen on diffusion bonding of TiAl-based intermetallics using hydrogenated Ti-6Al-4V interlayer, International Journal of Hydrogen Energy. 35 (2010) 13317-13321.

DOI: 10.1016/j.ijhydene.2010.09.040

Google Scholar

[9] G. Çm, H. Clemens, R. Gerling ,M. Kocak, Diffusion bonding of γ-TiAl sheets, Intermetallics. 7 (1999) 1025-1031.

DOI: 10.1016/s0966-9795(99)00012-6

Google Scholar

[10] G. Cam, M. Koçak, Diffusion bonding of investment cast γ-TiAl, Journal of materials science. 34 (1999) 3345-3354.

Google Scholar

[11] J.T. Xiong, Q. Xie, J.L. Li, F.S. Zhang, W.D. Huang, Diffusion bonding of stainless steel to copper with tin bronze and gold Interlayers, Journal of materials engineering and performance. 21 (2012) 33-37.

DOI: 10.1007/s11665-011-9870-y

Google Scholar

[12] S. Simões, F. Viana, M. Koçak, A. S. Ramos, M. T. Vieira, M. F. Vieira, Microstructure of reaction zone formed during diffusion bonding of TiAl with Ni/Al multilayers, Journal of materials engineering and performance. 21(2012) 678-682.

DOI: 10.1007/s11665-012-0144-0

Google Scholar

[13] L.I. Duarte, F. Viana, A.S. Ramos, M.T. Vieira, C. Leinenbach, U.E. Klotz, M.F. Vieira, Diffusion bonding of gamma-TiAl using modified Ti/Al nanolayers, Journal of Alloys and Compounds. 536 (2012) s424-s427.

DOI: 10.1016/j.jallcom.2011.12.037

Google Scholar

[14] Y. Nakao, K. Shinozaki, M. Hamada, Diffusion bonding of intermetallic compound TiAl, ISIJ international. 31 (1991) 1260-1266.

DOI: 10.2355/isijinternational.31.1260

Google Scholar

[15] D. Herrmann, F. Appel, Diffusion bonding of γ (TiAl) alloys: influence of composition, microstructure, and mechanical properties, Metallurgical and Materials Transactions A. 40 (2009) 1881-(1902).

DOI: 10.1007/s11661-009-9878-1

Google Scholar

[16] W.J. Zhang, Z.C. Liu, G.L. Chen, Y.W. Kim, Deformation mechanisms in a high-Nb containing γ–TiAl alloy at 900° C, Materials Science and Engineering: A. 271 (1999) 416-423.

DOI: 10.1016/s0921-5093(99)00313-5

Google Scholar

[17] X.J. Xu, J.P. Lin, Y.L. Wang, J.F. Gao, Z. Lin, G.L. Chen, Effect of forging on microstructure and tensile properties of Ti-45Al-(8–9) Nb-(W, B, Y) alloy, Journal of Alloys and Compounds. 414 (2006), 175-180.

DOI: 10.1016/j.jallcom.2005.03.121

Google Scholar

[18] Z.C. Liu, J.P. Lin, S.J. Li, G.L. Chen, Effects of Nb and Al on the microstructures and mechanical properties of high Nb containing TiAl base alloys, Intermetallics. 10 (2002) 653-659.

DOI: 10.1016/s0966-9795(02)00037-7

Google Scholar