Effect of Container on the Microstructure and Properties of Powder Metallurgy TiAl Alloys

Article Preview

Abstract:

Pre-alloyed powder of Ti-47Al-2Cr-2Nb-0.15B was prepared by a gas atomization process and powder metallurgy (PM) γ-TiAl alloys were made through a hot isostatic pressed (HIPed) route. The atomized powders were canned in containers, degassed, sealed, and HIPed. Effect of two different canning materials (mild steel and commercial pure titanium (CP-Ti)) on the microstructure and properties of as-HIPed γ-TiAl alloy were discussed. Due to the reaction between mild steel containers and γ-TiAl at relative high temperature (over 1230 °C), the γ-TiAl matrix is contaminated. CP-Ti canned γ-TiAl showed bigger yield and fracture strength than mild steel canned TiAl. PM γ-TiAl alloy parts having complex shape could be manufactured by the near net-shape process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

604-609

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Kothari, R. Radhakrishnan and N.M. Wereley: Progress in Aerospace Sciences. Vol. 55 (2012), p.1.

Google Scholar

[2] X. Lin, et al.: Rare Metal Materials and Engineering Vol. 42 (2013), pp.1568-1571.

Google Scholar

[3] K. Kothari, R. Radhakrishnan and N.M. Wereley: Progress in Aerospace Sciences. Vol. 55 (2012), p.1.

Google Scholar

[4] W. X. Yuan, J. Mei, V. Samarov, D. Seliverstov, X. Wu: J. Mater. Process. Technol. Vol. 182 (2007), p.39.

Google Scholar

[5] U. Habel, B.J. McTiernan: Intermetallics. Vol. 12 (2004), p.63.

Google Scholar

[6] W.X. Cheng, L. Xu, J.F. Lei, Y.Y. Liu and R. Yang: Chin J Nonferrous Met. Vol. 23 (2013), p.362.

Google Scholar

[7] W.X. Cheng: submitted to Insititute of Metal Research (2013).

Google Scholar

[8] Y.T. Lee, H. Schurmann, K.J. Grundhoff, M. Peters: Powder Metall. Int. Vol. 22 (1990), p.11.

Google Scholar

[9] G. Wang, L. Xu, Y.X. Tian, Z. Zheng, Y.Y. Cui, R. Yang : Mater. Sci. Eng. A Vol. 528 (2011), p.6754.

Google Scholar

[10] L. Xu, C.G. Bai, D. Liu, W. Sun, D.J. Yu, Y.Y. Cui, R. Yang, in : Structural Aluminides for Elevated Temperature Applications, edited by Y.W. Kim, D.G. Morris, R. Yang and C. Leyens in TMS, Warrendale, PA(2008).

Google Scholar

[11] J. Wu, L. Xu, B. Lu, Y.Y. Cui, R. Yang : J. Mater. Res Vol. 28 (2014), p.387.

Google Scholar

[12] M. Thomas, J.L. Raviart, F. Popoff: Intermetallics. Vol. 13 (2005), p.944.

Google Scholar

[13] S. Kundu, M. Ghosh, A. Laik, K. Bhanumurthy, G. B. Kale, S. Chatterjee : Mater. Sci. Eng. A Vol. 407 (2005), p.154.

Google Scholar

[14] M. Ghosh, K. Bhanumurthy, G. B. Kale, S. Chatterjee: Mater. Sci. Technol. Vol. 20 (2004), p.131.

Google Scholar

[15] A. Tokar, L. Levin, A. Katsman, A. Ginzburg, A. Berner, A. Fein, F. Simcal, A. Stern : Mater. Sci. Eng. A Vol. 351 (2003), p.56.

Google Scholar

[16] H. Jiang, K. Zhang, F.A. Garcia-Pastor, M.H. Loretto, D. Hu, P.J. Withers, M. Preuss and X. Wu: Mater. Sci. Technol. Vol. 27 (2011), p.1241.

Google Scholar

[17] S. G. Wang, S.C. Wang, L. Zhang: Acta Metall Sin. Vol. 8 (2013), p.897 (In Chinese).

Google Scholar

[18] K. Zhang, J. Mei, N. Wain and X. Wu: Metall. Mater. Trans. A. Vol. 41 (2010), p.1033.

Google Scholar

[19] J. Wu: submitted to Insititute of Metal Research (2011).

Google Scholar