[1]
R.Z. Valiev, M.J. Zehetbauer, Y. Estrin, H.W. Höppel, Y. Ivanisenko, H. Hahn, G. Wilde, H.J. Roven, X. Sauvage, T.G. Langdon, The innovation potential of bulk nanostructured materials, Adv. Eng. Mater. 9 (2007) 527-532.
DOI: 10.1002/adem.200700078
Google Scholar
[2]
R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from sever plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[3]
R. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Mater. 3 (2004) 511-516.
DOI: 10.1038/nmat1180
Google Scholar
[4]
R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58 (2006) 33-39.
DOI: 10.1007/s11837-006-0213-7
Google Scholar
[5]
I. Sabirov, M.Y. Murashkin and R.Z. Valiev, Nanostructured aluminum alloys produced by severe plastic deformation: new horizons in development, Mater. Sci. Eng. A 560 (2013) 1-24.
DOI: 10.1016/j.msea.2012.09.020
Google Scholar
[6]
Y.T. Zhu, X.Z. Liao, Formation mechanism of fivefold deformation twins in nanocrystalline face-centered-cubic metals, Appl. Phys. Lett. 86 (2005) 103112-1-3.
DOI: 10.1063/1.1879111
Google Scholar
[7]
M.W. Chen, E. Ma, K.J. Hemker, H.W. Sheng, Y.M. Wang, X.M. Cheng, Deformation twinning in nanocrystalline Aluminum, Science 300 (2003) 1275-1277.
DOI: 10.1126/science.1083727
Google Scholar
[8]
M.P. Liu, H.J. Roven, Y.D. Yu, Deformation twins in ultrafine grained commercial aluminum, Int. J. Mat. Res. 98 (2007) 184-190.
DOI: 10.3139/146.101453
Google Scholar
[9]
M.P. Liu, H.J. Roven, Y.D. Yu, J.C. Werenskiold, Deformation structures in 6082 aluminum alloy after severe plastic deformation by equal-channel angular pressing, Mater. Sci. Eng. A 483-484 (2008) 59-63.
DOI: 10.1016/j.msea.2006.09.144
Google Scholar
[10]
M.P. Liu, H.J. Roven, M. Murashkin, R.Z. Valiev, Deformation twins and stacking faults in an AA5182 Al-Mg alloy processed by high pressure torsion, Mater. Sci. Forum. 579 (2008) 147-154.
DOI: 10.4028/www.scientific.net/msf.579.147
Google Scholar
[11]
D. Sundararaman, Nanocrystalline state and solid state amorphization, Mater. Sci. Eng. B 32 (1995), 307-313.
Google Scholar
[12]
S. Han, L. Zhao, Q. Jiang, J.S. Lian, Deformation-induced solid-state amorphization in nanocrystalline nickel, Sci. Rep. 2 (2012) 1-5.
DOI: 10.1038/srep00493
Google Scholar
[13]
X. Wu, N. Tao, Y. Hong, J. Lu, K. Lu, Localized solid-state amorphization at grain boundaries in a nanocrystalline Al solid solution subjected to surface mechanical attrition, J. Phys. D: Appl. Phys. 38 (2005) 4140-4143.
DOI: 10.1088/0022-3727/38/22/019
Google Scholar
[14]
W. Chen, Q.Y. Sun, L. Xiao, J. Sun, Deformation-induced grain refinement and amorphization in Ti-10V-2Fe-3Al alloy, Metall. Mater. Trans. A 43 (2012) 316-326.
DOI: 10.1007/s11661-011-0856-z
Google Scholar
[15]
M.P. Liu, H.J. Roven, High density hexagonal and rhombic shaped nanostructures in a fcc aluminum alloy induced by severe plastic deformation at room temperature, Appl. Phys. Lett. 90 (2007) 083115-1-3.
DOI: 10.1063/1.2696540
Google Scholar
[16]
X.L. Wu, E. Ma, Y.T. Zhu, Deformation defects in nanocrystalline nickel, J. Mater. Sci. 42 (2007) 1427-1432.
Google Scholar
[17]
D. Raabe, S. Ohsaki, K. Hono, Mechanical alloying and amorphization in Cu-Ni-Ag in situ composite wires studies by transmission electron microscopy and atom probe tomography, Acta Mater 57 (2009) 5254-5263.
DOI: 10.1016/j.actamat.2009.07.028
Google Scholar
[18]
S.Y. Jiang, L. Hu, Y.Q. Zhang, Y.L. Liang, Nanocrystallization and amorphization of NiTi shape memory alloy under severe plastic deformation based on local canning compression, J. Non-Cryst. Solids. 367 (2013) 23-29.
DOI: 10.1016/j.jnoncrysol.2013.01.051
Google Scholar
[19]
M.P. Liu, H.J. Roven, M.Y. Murashkin, R.Z. Valiev, A. Kilmameton, Z. Zhang, Y.D. Yu, Structure and mechanical properties of nanostructured Al–Mg alloys processed by severe plastic deformation, J. Mater. Sci. 48 (2013) 4681-4688.
DOI: 10.1007/s10853-012-7133-4
Google Scholar
[20]
M.P. Liu, H.J. Roven, X.T. Liu, M. Murashkin, R.Z. Valiev, T. Ungár and L. Balogh, Grain refinement in nanostructured Al-Mg alloys subjected to high pressure torsion, J. Mater. Sci. 45 (2010) 4659-4664.
DOI: 10.1007/s10853-010-4604-3
Google Scholar
[21]
M.P. Liu, H.J. Roven, T. Ungár, L. Balogh, M. Murashkin, R.Z. Valiev, Grain boundary structure and deformation defects in nanostructured Al–Mg alloys processed by high pressure torsion, Mater. Sci. Forum. 584-586 (2008) 528-534.
DOI: 10.4028/www.scientific.net/msf.584-586.528
Google Scholar
[22]
E. Ma, T.D. Shen, X.L. Wu, Annealing out dislocations in deformed metals usually leads to reduced strength and increased ductility. Exactly the opposite has been observed in bulk nanostructured aluminum, Nature Mater. 5 (2006) 515-516.
Google Scholar
[23]
M. Murayama, J.M. Howe, H. Hidaka, S. Takaki, Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe, Science 295 (2002) 2433-2435.
DOI: 10.1126/science.1067430
Google Scholar
[24]
J. Rawers, D. Cook, Influence of attrition milling on nano-grain boundaries, Nanostruct. Mater. 11 (1999) 331-342.
DOI: 10.1016/s0965-9773(99)00049-5
Google Scholar
[25]
C. Rentenberger, T. Waitz, H.P. Karnthaler, HRTEM analysis of nanostructured alloys processed by severe plastic deformation, Scripta Mater. 51 (2004) 789-794.
DOI: 10.1016/j.scriptamat.2004.05.008
Google Scholar
[26]
H. Nakayama, K. Tsuchiya, Z.G. Liu, M. Umemoto, K. Morii, T. Shimizu, Process of nanocrystallization and partial amorphization by cold rolling in TiNi, Mater. Trans. 42 (2001) 1987-(1993).
DOI: 10.2320/matertrans.42.1987
Google Scholar
[27]
M. Li, Defect-induced topological order-to-disorder transitions: a molecular dynamics study, Phys. Rev. B 62 (2000) 13979-13995.
DOI: 10.1103/physrevb.62.13979
Google Scholar
[28]
J. Koike, D.M. Parkin, M. Nastasi, Crystal-to-amorphous transformation of NiTi induced by cold rolling, J. Mater. Res. 5 (1990) 1414-1418.
DOI: 10.1557/jmr.1990.1414
Google Scholar
[29]
I. Szlufarska, R.K. Kalia, A. Nakano, P. Vashishta, Nanoindentation-induced amorphization in silicon carbide, Appl. Phys. Lett. 85 (2004) 378-380.
DOI: 10.1063/1.1774252
Google Scholar
[30]
Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, Z. Horita, T.G. Langdon, Y.T. Zhu, The role of stacking faults and twin boundaries in grain refinement of a Cu-Zn alloy processed by high-pressure torsion, Mater. Sci. Eng. A 527 (2010).
DOI: 10.1016/j.msea.2010.04.036
Google Scholar