Deformation-Induced Solid-State Amorphization in a Nanostructured Al-Mg Alloy Processed by High Pressure Torsion

Article Preview

Abstract:

This work reports the experimental evidence of localized solid-state amorphization (SSA) in a nanostructured Al–Mg alloy processed by high pressure torsion at room temperature. Electron backscatter diffraction analysis indicated that the deformed alloy had a very small average grain size of about 79 nm. High-resolution transmission electron microscopy (HRTEM) observations illustrated that the deformation-induced SSA were frequently located in the vicinity of grain boundaries (GBs) and GB junctions where high density dislocations, severe lattice distortion, deformation twins and stacking faults coexisted in the deformed alloy. The SSA phenomenon may primarily be attributed to the strong interactions of the high dislocation densities, GBs and the planar interfaces. A possible formation process of amorphization is proposed based on the HRTEM investigations. The present results suggest that the crystalline-to-amorphous transformation could also occur in binary Al–Mg alloys through severe plastic deformation that are usually produced by rapid solidification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

627-633

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.Z. Valiev, M.J. Zehetbauer, Y. Estrin, H.W. Höppel, Y. Ivanisenko, H. Hahn, G. Wilde, H.J. Roven, X. Sauvage, T.G. Langdon, The innovation potential of bulk nanostructured materials, Adv. Eng. Mater. 9 (2007) 527-532.

DOI: 10.1002/adem.200700078

Google Scholar

[2] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from sever plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[3] R. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Mater. 3 (2004) 511-516.

DOI: 10.1038/nmat1180

Google Scholar

[4] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58 (2006) 33-39.

DOI: 10.1007/s11837-006-0213-7

Google Scholar

[5] I. Sabirov, M.Y. Murashkin and R.Z. Valiev, Nanostructured aluminum alloys produced by severe plastic deformation: new horizons in development, Mater. Sci. Eng. A 560 (2013) 1-24.

DOI: 10.1016/j.msea.2012.09.020

Google Scholar

[6] Y.T. Zhu, X.Z. Liao, Formation mechanism of fivefold deformation twins in nanocrystalline face-centered-cubic metals, Appl. Phys. Lett. 86 (2005) 103112-1-3.

DOI: 10.1063/1.1879111

Google Scholar

[7] M.W. Chen, E. Ma, K.J. Hemker, H.W. Sheng, Y.M. Wang, X.M. Cheng, Deformation twinning in nanocrystalline Aluminum, Science 300 (2003) 1275-1277.

DOI: 10.1126/science.1083727

Google Scholar

[8] M.P. Liu, H.J. Roven, Y.D. Yu, Deformation twins in ultrafine grained commercial aluminum, Int. J. Mat. Res. 98 (2007) 184-190.

DOI: 10.3139/146.101453

Google Scholar

[9] M.P. Liu, H.J. Roven, Y.D. Yu, J.C. Werenskiold, Deformation structures in 6082 aluminum alloy after severe plastic deformation by equal-channel angular pressing, Mater. Sci. Eng. A 483-484 (2008) 59-63.

DOI: 10.1016/j.msea.2006.09.144

Google Scholar

[10] M.P. Liu, H.J. Roven, M. Murashkin, R.Z. Valiev, Deformation twins and stacking faults in an AA5182 Al-Mg alloy processed by high pressure torsion, Mater. Sci. Forum. 579 (2008) 147-154.

DOI: 10.4028/www.scientific.net/msf.579.147

Google Scholar

[11] D. Sundararaman, Nanocrystalline state and solid state amorphization, Mater. Sci. Eng. B 32 (1995), 307-313.

Google Scholar

[12] S. Han, L. Zhao, Q. Jiang, J.S. Lian, Deformation-induced solid-state amorphization in nanocrystalline nickel, Sci. Rep. 2 (2012) 1-5.

DOI: 10.1038/srep00493

Google Scholar

[13] X. Wu, N. Tao, Y. Hong, J. Lu, K. Lu, Localized solid-state amorphization at grain boundaries in a nanocrystalline Al solid solution subjected to surface mechanical attrition, J. Phys. D: Appl. Phys. 38 (2005) 4140-4143.

DOI: 10.1088/0022-3727/38/22/019

Google Scholar

[14] W. Chen, Q.Y. Sun, L. Xiao, J. Sun, Deformation-induced grain refinement and amorphization in Ti-10V-2Fe-3Al alloy, Metall. Mater. Trans. A 43 (2012) 316-326.

DOI: 10.1007/s11661-011-0856-z

Google Scholar

[15] M.P. Liu, H.J. Roven, High density hexagonal and rhombic shaped nanostructures in a fcc aluminum alloy induced by severe plastic deformation at room temperature, Appl. Phys. Lett. 90 (2007) 083115-1-3.

DOI: 10.1063/1.2696540

Google Scholar

[16] X.L. Wu, E. Ma, Y.T. Zhu, Deformation defects in nanocrystalline nickel, J. Mater. Sci. 42 (2007) 1427-1432.

Google Scholar

[17] D. Raabe, S. Ohsaki, K. Hono, Mechanical alloying and amorphization in Cu-Ni-Ag in situ composite wires studies by transmission electron microscopy and atom probe tomography, Acta Mater 57 (2009) 5254-5263.

DOI: 10.1016/j.actamat.2009.07.028

Google Scholar

[18] S.Y. Jiang, L. Hu, Y.Q. Zhang, Y.L. Liang, Nanocrystallization and amorphization of NiTi shape memory alloy under severe plastic deformation based on local canning compression, J. Non-Cryst. Solids. 367 (2013) 23-29.

DOI: 10.1016/j.jnoncrysol.2013.01.051

Google Scholar

[19] M.P. Liu, H.J. Roven, M.Y. Murashkin, R.Z. Valiev, A. Kilmameton, Z. Zhang, Y.D. Yu, Structure and mechanical properties of nanostructured Al–Mg alloys processed by severe plastic deformation, J. Mater. Sci. 48 (2013) 4681-4688.

DOI: 10.1007/s10853-012-7133-4

Google Scholar

[20] M.P. Liu, H.J. Roven, X.T. Liu, M. Murashkin, R.Z. Valiev, T. Ungár and L. Balogh, Grain refinement in nanostructured Al-Mg alloys subjected to high pressure torsion, J. Mater. Sci. 45 (2010) 4659-4664.

DOI: 10.1007/s10853-010-4604-3

Google Scholar

[21] M.P. Liu, H.J. Roven, T. Ungár, L. Balogh, M. Murashkin, R.Z. Valiev, Grain boundary structure and deformation defects in nanostructured Al–Mg alloys processed by high pressure torsion, Mater. Sci. Forum. 584-586 (2008) 528-534.

DOI: 10.4028/www.scientific.net/msf.584-586.528

Google Scholar

[22] E. Ma, T.D. Shen, X.L. Wu, Annealing out dislocations in deformed metals usually leads to reduced strength and increased ductility. Exactly the opposite has been observed in bulk nanostructured aluminum, Nature Mater. 5 (2006) 515-516.

Google Scholar

[23] M. Murayama, J.M. Howe, H. Hidaka, S. Takaki, Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe, Science 295 (2002) 2433-2435.

DOI: 10.1126/science.1067430

Google Scholar

[24] J. Rawers, D. Cook, Influence of attrition milling on nano-grain boundaries, Nanostruct. Mater. 11 (1999) 331-342.

DOI: 10.1016/s0965-9773(99)00049-5

Google Scholar

[25] C. Rentenberger, T. Waitz, H.P. Karnthaler, HRTEM analysis of nanostructured alloys processed by severe plastic deformation, Scripta Mater. 51 (2004) 789-794.

DOI: 10.1016/j.scriptamat.2004.05.008

Google Scholar

[26] H. Nakayama, K. Tsuchiya, Z.G. Liu, M. Umemoto, K. Morii, T. Shimizu, Process of nanocrystallization and partial amorphization by cold rolling in TiNi, Mater. Trans. 42 (2001) 1987-(1993).

DOI: 10.2320/matertrans.42.1987

Google Scholar

[27] M. Li, Defect-induced topological order-to-disorder transitions: a molecular dynamics study, Phys. Rev. B 62 (2000) 13979-13995.

DOI: 10.1103/physrevb.62.13979

Google Scholar

[28] J. Koike, D.M. Parkin, M. Nastasi, Crystal-to-amorphous transformation of NiTi induced by cold rolling, J. Mater. Res. 5 (1990) 1414-1418.

DOI: 10.1557/jmr.1990.1414

Google Scholar

[29] I. Szlufarska, R.K. Kalia, A. Nakano, P. Vashishta, Nanoindentation-induced amorphization in silicon carbide, Appl. Phys. Lett. 85 (2004) 378-380.

DOI: 10.1063/1.1774252

Google Scholar

[30] Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, Z. Horita, T.G. Langdon, Y.T. Zhu, The role of stacking faults and twin boundaries in grain refinement of a Cu-Zn alloy processed by high-pressure torsion, Mater. Sci. Eng. A 527 (2010).

DOI: 10.1016/j.msea.2010.04.036

Google Scholar