Thermal Properties and Transition Temperatures of AlB2-Type Diborides

Article Preview

Abstract:

The thermal properties, cohesion and transition temperatures of 14 compounds in the AlB2-type diborides have been calculated by first-principles. The obtained thermal properties, cohesion and transition temperatures Tc were compared with both available experimental data and other theoretical results. The relationship among enthalpy formation, bulk modulus and melting temperature in these diborides were further analyzed. The results illustrate that ZrB2 is the most stable, and AuB2 has the largest c/a ratio and it is also most unstable to a phase separation. It is observed that the diborides including Mg, Sc, and Hf series with a more negative enthalpy of formation have a larger bulk modulus and higher melting temperature. AuB2 has higher electron-phonon coupling constant and hence possesses a higher Tc.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

740-747

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimistu, Superconductivity at 39 K in magnesium diboride, Nature. 410(2001) 63-64.

DOI: 10.1038/35065039

Google Scholar

[2] L. Ivanovskiia, Superconducting MgB2 and related compounds: synthesis, properties and electronic structure, Russ. Chem. Rev. 70(2001) 717-734.

Google Scholar

[3] C. Buzea, T. Yamashita, Review of the superconducting properties of MgB2, Supercond. Sci. Techno. 14(2001) 115.

Google Scholar

[4] K.E. Spear, Chemical bonding in AlB2-type borides, J. Less-Common. Met. 47(1976) 195-201.

DOI: 10.1016/0022-5088(76)90096-5

Google Scholar

[5] Y. Liu, C. Ding, Y.X. Li, Grain refining mechanism of Al-3B master alloy on hypoeutectic Al-Si alloys, Trans. Nonferrous Met. Soc. China. 21(2011) 1435-1440.

DOI: 10.1016/s1003-6326(11)60878-9

Google Scholar

[6] D.C. Larbalestier, D. Cooleyl, M.O. Rikel, A.A. Polyanskil, J. Jiang, S. Patnaik , X. Y. Cai, D.M. Feldmann, A. Gurevich, A.A. Squitieri, M.T. Naus, C.B. Eom, E.E. Hellstrom, R.J. Cava, K.A. Regan, N. Rogado, M.A. Hayward, T. He, J.S. Slusky, P. Khalifah, K. Inumaru, M. Hass, Strongly linked current flow in polycrystalline forms of the new superconductor MgB2, Nature. 410(2001).

DOI: 10.1038/35065559

Google Scholar

[7] I. Dinaharan, N. Murugan, sliding wear behavior of AA6061/ZrB2 in-situ composite, Trans. Nonferrous Met. Soc. China. 22(2012) 810-818.

DOI: 10.1016/s1003-6326(11)61249-1

Google Scholar

[8] Y.H. Xion, P.J. Li, X.P. Zhang, Y.G. Zhao, B.S. Cao, D.B. Zeng, Influence of doping effect on structure and superconducting properties of MgB2 , Trans. Nonferrous Met. Soc. China. 13(2003) 912-916.

Google Scholar

[9] G.S. Gan, L. Zhang, S.Y. Be, Y. Lu, B. Yang, Effect of TiB2 addition on microstructure of spray-formed Si-30Al composite, Trans. Nonferrous Met. Soc. China. 21(2011) 2242-2247.

DOI: 10.1016/s1003-6326(11)61002-9

Google Scholar

[10] J. Fjellstedt, A.E. W. Jarfors, L. Svendsen, Experimental analysis of the intermediary phases AlB2, AlB12 and TiB2 in the Al-B and Al-Ti-B systems, J. Alloys Compd. 283(1999) 192-197.

DOI: 10.1016/s0925-8388(98)00892-5

Google Scholar

[11] M. Nakao, Bonding nature and wave function around the Fermi level of MgB2-related compounds, Physica. C. 388-389(2003) 137-138.

DOI: 10.1016/s0921-4534(02)02683-7

Google Scholar

[12] T. Oguchi, Cohesion in AlB2-type diborides: a first-principle study, J. Phys. Soc. Jpn. 71(2002) 1495-1500.

DOI: 10.1143/jpsj.71.1495

Google Scholar

[13] M. D. Segall, P.J. D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys: Condens Matter. 14(2002) 2717-2744.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[14] B. Xiao, J. Feng, C.T. Zhou, J.D. Xing, X.J. Xie, Y.H. Cheng, R. Zhou, The elasticity, bond hardness and thermodynamic properties of X2B (X=Cr, Mn, Fe, Co, Ni, Mo, W) investigated by DFT theory, Physica. B. 405(2010) 1274-1278.

DOI: 10.1016/j.physb.2009.11.064

Google Scholar

[15] J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B. 54(1996) 16533-16539.

DOI: 10.1103/physrevb.54.16533

Google Scholar

[16] P. Vallars, Pearson's handbook: crystallographic data for intermetallic phases, Materials Park: ASM International, U. S. OH, (1997).

Google Scholar

[17] V.L. Moruzzi, J.F. Janak, A.R. Williams, Calculated electronic properties of metals, Pergamon, New York, (1978).

Google Scholar

[18] A.R. William, C.D. Gelatt, V.L. Moruzzi, Microscopic basis of miedema's empirical theory of transition-metal compound formation, Phys. Rev. Lett. 44(1980) 429-433.

DOI: 10.1103/physrevlett.44.429

Google Scholar

[19] D.R. Lide, Hand book of chemistry and physics, Boca Raton: CRC Press, FL, (2001).

Google Scholar

[20] M.E. Fine, L.D. Brown, H.L. Marcus, Elastic constants versus melting temperature in metals, Scipta Metall Vol. 18 (1984), pp.951-956.

DOI: 10.1016/0036-9748(84)90267-9

Google Scholar

[21] H. Zhang, S.L. Shang, J.E. Saal, A. Saengdeejing, Y. Wang, L.Q. Chen, Z.K. Liu, Enthalpies of formation of magnesium compounds from first-principles calculations, Intermetallics. 17(2009) 878-885.

DOI: 10.1016/j.intermet.2009.03.017

Google Scholar

[22] W.L. Mcmillan, Transition temperature of strong-coupled superconductors, Phys. Rev. 167(1968) 331-344.

DOI: 10.1103/physrev.167.331

Google Scholar

[23] F. Yang, R. S. Han, N. H. Tong, W. Guo, Electronic structural properties and superconductivity of diborides in the MgB2 structure, Chin. Phys. Lett. 19(2002) 1336-1339.

Google Scholar

[24] K.P. Bohnen, R. Heid, B. Renker, Phonon dispersion and electron-phonon coupling in MgB2 and AlB2, Phys. Rev. Lett. 86(2001) 5771-5774.

Google Scholar

[25] G. Levchenko, A. Lyaschenko, V. Baumer, A. Evdokimova, V. B. Filippov, Y. Paderno, Preparation and some properties of ScB2 single crystals, J. Solid State Chem. 179(2006) 2949-2953.

DOI: 10.1016/j.jssc.2006.05.022

Google Scholar

[26] D.J. Steinberg, Computer studies of the dynamic strength of ceramics, J. Phys. IV France. 01(1991) 837-844.

DOI: 10.1051/jp4:19913117

Google Scholar

[27] P. Vajeeston, P. Ravindran, C. Ravi, R. Asokamani, Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides, Phys. Rev. B. 63(2001) 045115.

DOI: 10.1103/physrevb.63.045115

Google Scholar

[28] H.B. Ozisik, E. Deligoz, K. Colakoglu, Y.O. Ciftci, Structural, elastic, and lattice dynamical properties of YB2 compound, Comput. Mater. Sci. 50(2011) 1057-1063.

DOI: 10.1016/j.commatsci.2010.10.046

Google Scholar

[29] X.F. Li, G.F. Ji, F. Zhao, X.R. Chen, D. Alfell, First-principles calculations of elastic and electronic properties of NbB2 under pressure, J Phys: Condens Matter. 21(2009) 025505.

DOI: 10.1088/0953-8984/21/2/025505

Google Scholar

[30] X.F. Hao, Y.H. Xu, Z.J. Wu, D.F. Zhou, X.J. Liu, X.Q. Cao, J. Meng, Low-compressibility and hard materials ReB2 and WB2: Prediction from first-principles study, Phys. Rev. B. 74(2006) 224112.

Google Scholar

[31] H.B. Ozisik, K. Colakoglu, E. Deligoz, First-principles study of structural and mechanical properties of AgB2 and AuB2 compounds under pressure, Comput. Mater. Sci. 51(2012) 83-90.

DOI: 10.1016/j.commatsci.2011.07.043

Google Scholar