[1]
J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimistu, Superconductivity at 39 K in magnesium diboride, Nature. 410(2001) 63-64.
DOI: 10.1038/35065039
Google Scholar
[2]
L. Ivanovskiia, Superconducting MgB2 and related compounds: synthesis, properties and electronic structure, Russ. Chem. Rev. 70(2001) 717-734.
Google Scholar
[3]
C. Buzea, T. Yamashita, Review of the superconducting properties of MgB2, Supercond. Sci. Techno. 14(2001) 115.
Google Scholar
[4]
K.E. Spear, Chemical bonding in AlB2-type borides, J. Less-Common. Met. 47(1976) 195-201.
DOI: 10.1016/0022-5088(76)90096-5
Google Scholar
[5]
Y. Liu, C. Ding, Y.X. Li, Grain refining mechanism of Al-3B master alloy on hypoeutectic Al-Si alloys, Trans. Nonferrous Met. Soc. China. 21(2011) 1435-1440.
DOI: 10.1016/s1003-6326(11)60878-9
Google Scholar
[6]
D.C. Larbalestier, D. Cooleyl, M.O. Rikel, A.A. Polyanskil, J. Jiang, S. Patnaik , X. Y. Cai, D.M. Feldmann, A. Gurevich, A.A. Squitieri, M.T. Naus, C.B. Eom, E.E. Hellstrom, R.J. Cava, K.A. Regan, N. Rogado, M.A. Hayward, T. He, J.S. Slusky, P. Khalifah, K. Inumaru, M. Hass, Strongly linked current flow in polycrystalline forms of the new superconductor MgB2, Nature. 410(2001).
DOI: 10.1038/35065559
Google Scholar
[7]
I. Dinaharan, N. Murugan, sliding wear behavior of AA6061/ZrB2 in-situ composite, Trans. Nonferrous Met. Soc. China. 22(2012) 810-818.
DOI: 10.1016/s1003-6326(11)61249-1
Google Scholar
[8]
Y.H. Xion, P.J. Li, X.P. Zhang, Y.G. Zhao, B.S. Cao, D.B. Zeng, Influence of doping effect on structure and superconducting properties of MgB2 , Trans. Nonferrous Met. Soc. China. 13(2003) 912-916.
Google Scholar
[9]
G.S. Gan, L. Zhang, S.Y. Be, Y. Lu, B. Yang, Effect of TiB2 addition on microstructure of spray-formed Si-30Al composite, Trans. Nonferrous Met. Soc. China. 21(2011) 2242-2247.
DOI: 10.1016/s1003-6326(11)61002-9
Google Scholar
[10]
J. Fjellstedt, A.E. W. Jarfors, L. Svendsen, Experimental analysis of the intermediary phases AlB2, AlB12 and TiB2 in the Al-B and Al-Ti-B systems, J. Alloys Compd. 283(1999) 192-197.
DOI: 10.1016/s0925-8388(98)00892-5
Google Scholar
[11]
M. Nakao, Bonding nature and wave function around the Fermi level of MgB2-related compounds, Physica. C. 388-389(2003) 137-138.
DOI: 10.1016/s0921-4534(02)02683-7
Google Scholar
[12]
T. Oguchi, Cohesion in AlB2-type diborides: a first-principle study, J. Phys. Soc. Jpn. 71(2002) 1495-1500.
DOI: 10.1143/jpsj.71.1495
Google Scholar
[13]
M. D. Segall, P.J. D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys: Condens Matter. 14(2002) 2717-2744.
DOI: 10.1088/0953-8984/14/11/301
Google Scholar
[14]
B. Xiao, J. Feng, C.T. Zhou, J.D. Xing, X.J. Xie, Y.H. Cheng, R. Zhou, The elasticity, bond hardness and thermodynamic properties of X2B (X=Cr, Mn, Fe, Co, Ni, Mo, W) investigated by DFT theory, Physica. B. 405(2010) 1274-1278.
DOI: 10.1016/j.physb.2009.11.064
Google Scholar
[15]
J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B. 54(1996) 16533-16539.
DOI: 10.1103/physrevb.54.16533
Google Scholar
[16]
P. Vallars, Pearson's handbook: crystallographic data for intermetallic phases, Materials Park: ASM International, U. S. OH, (1997).
Google Scholar
[17]
V.L. Moruzzi, J.F. Janak, A.R. Williams, Calculated electronic properties of metals, Pergamon, New York, (1978).
Google Scholar
[18]
A.R. William, C.D. Gelatt, V.L. Moruzzi, Microscopic basis of miedema's empirical theory of transition-metal compound formation, Phys. Rev. Lett. 44(1980) 429-433.
DOI: 10.1103/physrevlett.44.429
Google Scholar
[19]
D.R. Lide, Hand book of chemistry and physics, Boca Raton: CRC Press, FL, (2001).
Google Scholar
[20]
M.E. Fine, L.D. Brown, H.L. Marcus, Elastic constants versus melting temperature in metals, Scipta Metall Vol. 18 (1984), pp.951-956.
DOI: 10.1016/0036-9748(84)90267-9
Google Scholar
[21]
H. Zhang, S.L. Shang, J.E. Saal, A. Saengdeejing, Y. Wang, L.Q. Chen, Z.K. Liu, Enthalpies of formation of magnesium compounds from first-principles calculations, Intermetallics. 17(2009) 878-885.
DOI: 10.1016/j.intermet.2009.03.017
Google Scholar
[22]
W.L. Mcmillan, Transition temperature of strong-coupled superconductors, Phys. Rev. 167(1968) 331-344.
DOI: 10.1103/physrev.167.331
Google Scholar
[23]
F. Yang, R. S. Han, N. H. Tong, W. Guo, Electronic structural properties and superconductivity of diborides in the MgB2 structure, Chin. Phys. Lett. 19(2002) 1336-1339.
Google Scholar
[24]
K.P. Bohnen, R. Heid, B. Renker, Phonon dispersion and electron-phonon coupling in MgB2 and AlB2, Phys. Rev. Lett. 86(2001) 5771-5774.
Google Scholar
[25]
G. Levchenko, A. Lyaschenko, V. Baumer, A. Evdokimova, V. B. Filippov, Y. Paderno, Preparation and some properties of ScB2 single crystals, J. Solid State Chem. 179(2006) 2949-2953.
DOI: 10.1016/j.jssc.2006.05.022
Google Scholar
[26]
D.J. Steinberg, Computer studies of the dynamic strength of ceramics, J. Phys. IV France. 01(1991) 837-844.
DOI: 10.1051/jp4:19913117
Google Scholar
[27]
P. Vajeeston, P. Ravindran, C. Ravi, R. Asokamani, Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides, Phys. Rev. B. 63(2001) 045115.
DOI: 10.1103/physrevb.63.045115
Google Scholar
[28]
H.B. Ozisik, E. Deligoz, K. Colakoglu, Y.O. Ciftci, Structural, elastic, and lattice dynamical properties of YB2 compound, Comput. Mater. Sci. 50(2011) 1057-1063.
DOI: 10.1016/j.commatsci.2010.10.046
Google Scholar
[29]
X.F. Li, G.F. Ji, F. Zhao, X.R. Chen, D. Alfell, First-principles calculations of elastic and electronic properties of NbB2 under pressure, J Phys: Condens Matter. 21(2009) 025505.
DOI: 10.1088/0953-8984/21/2/025505
Google Scholar
[30]
X.F. Hao, Y.H. Xu, Z.J. Wu, D.F. Zhou, X.J. Liu, X.Q. Cao, J. Meng, Low-compressibility and hard materials ReB2 and WB2: Prediction from first-principles study, Phys. Rev. B. 74(2006) 224112.
Google Scholar
[31]
H.B. Ozisik, K. Colakoglu, E. Deligoz, First-principles study of structural and mechanical properties of AgB2 and AuB2 compounds under pressure, Comput. Mater. Sci. 51(2012) 83-90.
DOI: 10.1016/j.commatsci.2011.07.043
Google Scholar