[1]
J. Kim, J. Je, J. Lee, Y. Park, B. Lee, Microstructural Investigation of Ni/Au Ohmic Contact on p-Type GaN, J. Electrochem. Soc. 147 (2000) 4645-4651.
DOI: 10.1149/1.1394117
Google Scholar
[2]
H. Savaloni, M. Habibi, Influence of Ni deposition and subsequent N+ ion implantation at different substrate temperatures on nano-structure and corrosion behaviour of type 316 and 304 stainless steels, Appl. Surf. Sci., 258 (2011) 103-112.
DOI: 10.1016/j.apsusc.2011.08.014
Google Scholar
[3]
J. Kim, J. Je, J. Lee, Y. Park, T. Kim, I. Jung, B. Lee, J. Lee, Microstructural and electrical investigation of Ni/Au ohmic contact on p-type GaN, J. Electron. Mater., 30 (2001) L8-L12.
DOI: 10.1007/s11664-001-0110-3
Google Scholar
[4]
S. Nagakura, N. Otsuka, Y. Hirotsu, Electron State of Ni4N Studied by Electron Diffraction, J. Phys. Soc. Jpn. 35 (1973) 1492-1495.
DOI: 10.1143/jpsj.35.1492
Google Scholar
[5]
I. M. Neklyudov, A. N. Morozov, Formation and decay kinetics of nickel nitrides resulting from nitrogen ion implantation. The nickel-nitrogen phase diagram, Physica B 350, (2004) 325-337.
DOI: 10.1016/j.physb.2004.03.314
Google Scholar
[6]
A. Fernández Guillermet, K. Frisk, Thermodynamic properties of Ni Nitrides and phase stability in the Ni-N system, Int. J. Thermophys., 12(1991) 417-431.
DOI: 10.1007/bf00500762
Google Scholar
[7]
P. Hemzalová, M. Friák, M. Šob, D. Ma, A. Udyansky, D. Raabe, Ab initio study of thermodynamic, electronic, magnetic, structural, and elastic, properties of Ni4N allotropes,J. Neugebauer, Phys. Rev. B, 88 (2013)174103.
DOI: 10.1103/physrevb.88.174103
Google Scholar
[8]
J .P. Perdew, K. Burke, M. Ernzerhof , Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. , 77 (1996) 3865.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[9]
D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B , 41 (1990)7892.
DOI: 10.1103/physrevb.41.7892
Google Scholar
[10]
V. Milman, B. Winkler, J. A. White, C. J. Packard, M. C. Payne, E. V. Akhmatskaya , R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, Int. J. Quantum Chem. 77 (2000).
DOI: 10.1002/(sici)1097-461x(2000)77:5<895::aid-qua10>3.0.co;2-c
Google Scholar
[11]
M. A. Blanco, E. Francisco, V. Luaa, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model Comput. Phys. Commun. 158 (2004)57-72.
DOI: 10.1016/j.comphy.2003.12.001
Google Scholar
[12]
M. Methfessel, A. T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B, 40 (1989) 3616.
DOI: 10.1103/physrevb.40.3616
Google Scholar
[13]
I.R. Shein, A. L. Ivanovskii, Elastic properties of quaternary oxypnictides LaOFeAs and LaOFeP as basic phases for new 26-52 K superconducting materials from first principles, Scripta Mater., 59 (2008) 1099.
DOI: 10.1016/j.scriptamat.2008.07.028
Google Scholar
[14]
A. Reuss, Z. Angew Math. Mech., 9 (1929) 49-58.
Google Scholar
[15]
R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc Phys. Soc. Lond. A: 65 (1952) 349.
Google Scholar
[16]
O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids, 24 (1963) 909-917.
DOI: 10.1016/0022-3697(63)90067-2
Google Scholar
[17]
K.B. Panda, K.S. Ravi Chandran, Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory, Comput. Mater. Sci. 35 (2006)134-150.
DOI: 10.1016/j.commatsci.2005.03.012
Google Scholar
[18]
J.P. Poirier, Introduction to the Physics of the Earth's Interior, Cambridge University Press, (1991).
Google Scholar