First-Principles Study of Structural and Thermal of α-Ni4N

Article Preview

Abstract:

This paper reports a study on the structure and elastic properties of cubic α-Ni4N by performing first principles calculations within Generalized gradient approximation (GGA). The calculated lattice constant and elastic constants are in good agreement with the available experimental or theoretical value. The thermal properties including the bulk modulus, thermal expansion, Grüneisen parameter and Debye temperature have also been calculated within the quasi-harmonic Debye method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

719-724

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kim, J. Je, J. Lee, Y. Park, B. Lee, Microstructural Investigation of Ni/Au Ohmic Contact on p-Type GaN, J. Electrochem. Soc. 147 (2000) 4645-4651.

DOI: 10.1149/1.1394117

Google Scholar

[2] H. Savaloni, M. Habibi, Influence of Ni deposition and subsequent N+ ion implantation at different substrate temperatures on nano-structure and corrosion behaviour of type 316 and 304 stainless steels, Appl. Surf. Sci., 258 (2011) 103-112.

DOI: 10.1016/j.apsusc.2011.08.014

Google Scholar

[3] J. Kim, J. Je, J. Lee, Y. Park, T. Kim, I. Jung, B. Lee, J. Lee, Microstructural and electrical investigation of Ni/Au ohmic contact on p-type GaN, J. Electron. Mater., 30 (2001) L8-L12.

DOI: 10.1007/s11664-001-0110-3

Google Scholar

[4] S. Nagakura, N. Otsuka, Y. Hirotsu, Electron State of Ni4N Studied by Electron Diffraction, J. Phys. Soc. Jpn. 35 (1973) 1492-1495.

DOI: 10.1143/jpsj.35.1492

Google Scholar

[5] I. M. Neklyudov, A. N. Morozov, Formation and decay kinetics of nickel nitrides resulting from nitrogen ion implantation. The nickel-nitrogen phase diagram, Physica B 350, (2004) 325-337.

DOI: 10.1016/j.physb.2004.03.314

Google Scholar

[6] A. Fernández Guillermet, K. Frisk, Thermodynamic properties of Ni Nitrides and phase stability in the Ni-N system, Int. J. Thermophys., 12(1991) 417-431.

DOI: 10.1007/bf00500762

Google Scholar

[7] P. Hemzalová, M. Friák, M. Šob, D. Ma, A. Udyansky, D. Raabe, Ab initio study of thermodynamic, electronic, magnetic, structural, and elastic, properties of Ni4N allotropes,J. Neugebauer, Phys. Rev. B, 88 (2013)174103.

DOI: 10.1103/physrevb.88.174103

Google Scholar

[8] J .P. Perdew, K. Burke, M. Ernzerhof , Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. , 77 (1996) 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[9] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B , 41 (1990)7892.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[10] V. Milman, B. Winkler, J. A. White, C. J. Packard, M. C. Payne, E. V. Akhmatskaya , R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, Int. J. Quantum Chem. 77 (2000).

DOI: 10.1002/(sici)1097-461x(2000)77:5<895::aid-qua10>3.0.co;2-c

Google Scholar

[11] M. A. Blanco, E. Francisco, V. Luaa, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model Comput. Phys. Commun. 158 (2004)57-72.

DOI: 10.1016/j.comphy.2003.12.001

Google Scholar

[12] M. Methfessel, A. T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B, 40 (1989) 3616.

DOI: 10.1103/physrevb.40.3616

Google Scholar

[13] I.R. Shein, A. L. Ivanovskii, Elastic properties of quaternary oxypnictides LaOFeAs and LaOFeP as basic phases for new 26-52 K superconducting materials from first principles, Scripta Mater., 59 (2008) 1099.

DOI: 10.1016/j.scriptamat.2008.07.028

Google Scholar

[14] A. Reuss, Z. Angew Math. Mech., 9 (1929) 49-58.

Google Scholar

[15] R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc Phys. Soc. Lond. A: 65 (1952) 349.

Google Scholar

[16] O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids, 24 (1963) 909-917.

DOI: 10.1016/0022-3697(63)90067-2

Google Scholar

[17] K.B. Panda, K.S. Ravi Chandran, Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory, Comput. Mater. Sci. 35 (2006)134-150.

DOI: 10.1016/j.commatsci.2005.03.012

Google Scholar

[18] J.P. Poirier, Introduction to the Physics of the Earth's Interior, Cambridge University Press, (1991).

Google Scholar