[1]
Y. Feng, R. C. Wang, C.Q. Peng, Researches and applications of magnesium anode materials in seawater battery, Chin. J. Nonferrous Met. 21(2011) 259-268.
Google Scholar
[2]
N.G. Wang, R.C. Wang, C.Q. Peng, Y. Feng, X.Y. Zhang, Corrosion behavior of Mg-Al-Pb and Mg-Al-Pb-Zn-Mn alloys in 3. 5% NaCl solution, Trans. Nonferrous Met. Soc. China. 20(2010) 1936-(1943).
DOI: 10.1016/s1003-6326(09)60398-8
Google Scholar
[3]
S. Candan, M. Unal, M. Turkmen, E. Koc, Y. Turen, E. Candan, Improvement of mechanical and corrosion properties of magnesium alloy by lead addition, Mater. Sci. Eng. A. 501(2009) 115-118.
DOI: 10.1016/j.msea.2008.09.068
Google Scholar
[4]
Y.H. Duan, Y. Sun, J.H. He, Z.Z. Guo, D.S. Fang, Corrosion behavior of as-cast Pb-Mg-Al alloys in 3. 5% NaCl solution, Corrosion. 68(2012) 822-826.
DOI: 10.5006/0570
Google Scholar
[5]
R. Udhayan, D.P. Bhatt, On the corrosion behaviour of magnesium and its alloys using electrochemical techniques, J. Power Sources. 63(1996) 103-107.
DOI: 10.1016/s0378-7753(96)02456-1
Google Scholar
[6]
Y.H. Duan, Y. Sun, M.J. Peng, Z.Z. Guo, P.X. Zhu, Microstructure Evolution and Mechanical Properties of As-Cast Pb-Mg-Al Alloys,J. Mater. Eng. Perform. 21(2012) 973-976.
DOI: 10.1007/s11665-011-9965-5
Google Scholar
[7]
V. Ramachandran, M. Md. Ibrahim, Third-order elastic constants and the low-temperature limit of the Grüneisen parameter of Mg2Pb on axe's shell model, J. Low Temp. Phys. 47(1982) 351-353.
DOI: 10.1007/bf00683736
Google Scholar
[8]
G.A. Stringer, R.J. Higgins, Fermi Surface of Mg2Pb, Phys. Rev. B. 3(1971) 506-515.
Google Scholar
[9]
J.P. Van Dyke, F. Herman, Relativistic energy-band structure of Mg2Pb, Phys. Rev. B. 2(1970) 1644-1646.
Google Scholar
[10]
M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. : Condens. Matter. 14(2002) 2717-2744.
DOI: 10.1088/0953-8984/14/11/301
Google Scholar
[11]
M. Marlo, V. Milman, Density-functional of gradient-corrected exchange-correlation of titanium nitride using different ex-change-correlation functionals, Phys. Rev. B. 62(2000) 2899.
DOI: 10.1103/physrevb.62.2899
Google Scholar
[12]
H.W. Hugosson, O. Eriksson, U. Jansson, A.V. Ruban, P. Souvatzis, I.A. Abrikosov, Surface energies and work functions of the transition metal carbides, Surf. Sci. 557(2004) 243-254.
DOI: 10.1016/j.susc.2004.03.050
Google Scholar
[13]
H.Y. Wang, N. Wang, S. Zhang, X.Y. Deng, D.J. Li, H.Q. Gu, First-principles study on stability and electronic properties of W(001), W(110) and W(111) surfaces, Surf. Coat. Tech. 229(2013) 55-59.
DOI: 10.1016/j.surfcoat.2012.05.096
Google Scholar
[14]
Q. Jiang, D.S. Zhao, M. Zhao, Size-dependent interface energy and related interface stress, Acta Mater. 49(2001) 3143-3147.
DOI: 10.1016/s1359-6454(01)00232-4
Google Scholar
[15]
Y.H. Huang, Competition between surface energy and interphase energy in transition region and diameter-dependent orientation of silicon nanowires, Appl. Surf. Sci. 255(2009) 4347-4350.
DOI: 10.1016/j.apsusc.2008.11.032
Google Scholar
[16]
G. Brauer, J. Tiesler, Über Dichte und Gitterbau der Verbindungen Mg2Pb, Mg2Sn und Mg2Ge, Z. Anorg. Allg. Chem. 262(1950) 319-327.
DOI: 10.1002/zaac.19502620605
Google Scholar
[17]
H.B. Michaelson, The work function of the elements and it's periodicity, J. Appl. Phys. 48(1977) 4719-4733.
Google Scholar
[18]
J. Hölzl, F.K. Schulte: Work function of metals., Solid Surface Physics (Springer, Berlin, 1979).
Google Scholar
[19]
C.L. Fu, X. Wang, Y.Y. Ye, K.M. Ho, Phase stability, bonding mechanism, and elastic constants of Mo5Si3 by first-principles calculation, Intermetallics. 7(1999) 179-184.
DOI: 10.1016/s0966-9795(98)00018-1
Google Scholar
[20]
K. Rapcewicz, B. Chen, B. Yakobson, J. Bernholc, Consistent methodology for calculating surface and interface energies, Phys. Rev. B. 57(1998) 7281.
DOI: 10.1103/physrevb.57.7281
Google Scholar
[21]
I. Batyrev, A. Alavi, M.W. Finnis, Abinitio calculations on the Al2O3(0001) surface, Faraday Discuss. 114(1999) 33-34.
DOI: 10.1039/a903278i
Google Scholar
[22]
W. Seith, O. Kubaschewski, The Heats of Formation of Several Alloys, Z. Electrochem. 43(1937) 743-749.
Google Scholar
[23]
B. Dobovisek, A. Paulin, Practice of thermodynamic analysis of binary systems of metals with intermetallic bonds, Rud. Metal. Zb. 3(1965) 373-387.
Google Scholar