Stability and Electronic Structures of Mg2Pb (100), (110) and (111) Surfaces

Article Preview

Abstract:

The stability and electronic properties of Mg2Pb (100), (110) and (111) surfaces were investigated by using the first-principles density functional theory (DFT) method. The calculated results showed that the orders of relaxation and surface energy are |d15(111)| < |d15(110)| < |d15(100)| and Esurf(100) > Esurf(110) > Esurf(111), respectively, indicating that Mg2Pb (111) surface is the most stable among these three low index surfaces. The Density of states (DOS) of Mg2Pb surfaces are mainly dominated by Pb-6, Mg-3s, and 2p orbitals in the band ranging from-5 eV to Fermi level. It can be further obtained from results of the DOS and the charge density difference that Mg2Pb (111) surface is more stable than Mg2Pb (100) and (110) surfaces. The Mg2Pb (111) surface is the thermodynamically most favorable over all of the range of.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

690-697

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Feng, R. C. Wang, C.Q. Peng, Researches and applications of magnesium anode materials in seawater battery, Chin. J. Nonferrous Met. 21(2011) 259-268.

Google Scholar

[2] N.G. Wang, R.C. Wang, C.Q. Peng, Y. Feng, X.Y. Zhang, Corrosion behavior of Mg-Al-Pb and Mg-Al-Pb-Zn-Mn alloys in 3. 5% NaCl solution, Trans. Nonferrous Met. Soc. China. 20(2010) 1936-(1943).

DOI: 10.1016/s1003-6326(09)60398-8

Google Scholar

[3] S. Candan, M. Unal, M. Turkmen, E. Koc, Y. Turen, E. Candan, Improvement of mechanical and corrosion properties of magnesium alloy by lead addition, Mater. Sci. Eng. A. 501(2009) 115-118.

DOI: 10.1016/j.msea.2008.09.068

Google Scholar

[4] Y.H. Duan, Y. Sun, J.H. He, Z.Z. Guo, D.S. Fang, Corrosion behavior of as-cast Pb-Mg-Al alloys in 3. 5% NaCl solution, Corrosion. 68(2012) 822-826.

DOI: 10.5006/0570

Google Scholar

[5] R. Udhayan, D.P. Bhatt, On the corrosion behaviour of magnesium and its alloys using electrochemical techniques, J. Power Sources. 63(1996) 103-107.

DOI: 10.1016/s0378-7753(96)02456-1

Google Scholar

[6] Y.H. Duan, Y. Sun, M.J. Peng, Z.Z. Guo, P.X. Zhu, Microstructure Evolution and Mechanical Properties of As-Cast Pb-Mg-Al Alloys,J. Mater. Eng. Perform. 21(2012) 973-976.

DOI: 10.1007/s11665-011-9965-5

Google Scholar

[7] V. Ramachandran, M. Md. Ibrahim, Third-order elastic constants and the low-temperature limit of the Grüneisen parameter of Mg2Pb on axe's shell model, J. Low Temp. Phys. 47(1982) 351-353.

DOI: 10.1007/bf00683736

Google Scholar

[8] G.A. Stringer, R.J. Higgins, Fermi Surface of Mg2Pb, Phys. Rev. B. 3(1971) 506-515.

Google Scholar

[9] J.P. Van Dyke, F. Herman, Relativistic energy-band structure of Mg2Pb, Phys. Rev. B. 2(1970) 1644-1646.

Google Scholar

[10] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. : Condens. Matter. 14(2002) 2717-2744.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[11] M. Marlo, V. Milman, Density-functional of gradient-corrected exchange-correlation of titanium nitride using different ex-change-correlation functionals, Phys. Rev. B. 62(2000) 2899.

DOI: 10.1103/physrevb.62.2899

Google Scholar

[12] H.W. Hugosson, O. Eriksson, U. Jansson, A.V. Ruban, P. Souvatzis, I.A. Abrikosov, Surface energies and work functions of the transition metal carbides, Surf. Sci. 557(2004) 243-254.

DOI: 10.1016/j.susc.2004.03.050

Google Scholar

[13] H.Y. Wang, N. Wang, S. Zhang, X.Y. Deng, D.J. Li, H.Q. Gu, First-principles study on stability and electronic properties of W(001), W(110) and W(111) surfaces, Surf. Coat. Tech. 229(2013) 55-59.

DOI: 10.1016/j.surfcoat.2012.05.096

Google Scholar

[14] Q. Jiang, D.S. Zhao, M. Zhao, Size-dependent interface energy and related interface stress, Acta Mater. 49(2001) 3143-3147.

DOI: 10.1016/s1359-6454(01)00232-4

Google Scholar

[15] Y.H. Huang, Competition between surface energy and interphase energy in transition region and diameter-dependent orientation of silicon nanowires, Appl. Surf. Sci. 255(2009) 4347-4350.

DOI: 10.1016/j.apsusc.2008.11.032

Google Scholar

[16] G. Brauer, J. Tiesler, Über Dichte und Gitterbau der Verbindungen Mg2Pb, Mg2Sn und Mg2Ge, Z. Anorg. Allg. Chem. 262(1950) 319-327.

DOI: 10.1002/zaac.19502620605

Google Scholar

[17] H.B. Michaelson, The work function of the elements and it's periodicity, J. Appl. Phys. 48(1977) 4719-4733.

Google Scholar

[18] J. Hölzl, F.K. Schulte: Work function of metals., Solid Surface Physics (Springer, Berlin, 1979).

Google Scholar

[19] C.L. Fu, X. Wang, Y.Y. Ye, K.M. Ho, Phase stability, bonding mechanism, and elastic constants of Mo5Si3 by first-principles calculation, Intermetallics. 7(1999) 179-184.

DOI: 10.1016/s0966-9795(98)00018-1

Google Scholar

[20] K. Rapcewicz, B. Chen, B. Yakobson, J. Bernholc, Consistent methodology for calculating surface and interface energies, Phys. Rev. B. 57(1998) 7281.

DOI: 10.1103/physrevb.57.7281

Google Scholar

[21] I. Batyrev, A. Alavi, M.W. Finnis, Abinitio calculations on the Al2O3(0001) surface, Faraday Discuss. 114(1999) 33-34.

DOI: 10.1039/a903278i

Google Scholar

[22] W. Seith, O. Kubaschewski, The Heats of Formation of Several Alloys, Z. Electrochem. 43(1937) 743-749.

Google Scholar

[23] B. Dobovisek, A. Paulin, Practice of thermodynamic analysis of binary systems of metals with intermetallic bonds, Rud. Metal. Zb. 3(1965) 373-387.

Google Scholar