Hydrogen Isotopic Effects of Uranium Hydrides: First-Principles Calculations

Article Preview

Abstract:

In this paper, we study the ground-state and lattice dynamical properties of β-UH--3 by means of the first-principles density functional theory within the local spin-density approximation (LSDA)+U formulism. The lattice constants and electronic structure are correctly described by taking into account the strong on-site Coulomb repulsion among the 5f electrons localized on uranium atoms. Good agreement with experiments is achieved by tuning the effective Hubbard parameter at around 4 eV. The phonon band structure confirms the dynamical stability of β-UH--3, and the Raman-active modes are consistent with Raman spectrum measurements. The substitution of the deuterium (tritium) atom for hydrogen atom makes significant variations in the typical frequency of Raman-active modes. It is found that the Raman-active mode frequency is approximately inversely proportional to the square root of the hydrogen isotope mass. We conclude that Raman spectrum provides a powerful method for detecting hydrogen isotopic effects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

675-684

Citation:

Online since:

April 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.E. Flotow, H.R. Lohr, B.M. Abraham, D.W. Osborne, The heat capacity and thermodynamic functions of β-uranium hydride from 5 to 350°K, J. Am. Chem. Soc. 81(1959) 3529-3533.

DOI: 10.1021/ja01523a011

Google Scholar

[2] T. Robert, S. Wojciech, The discovery of the ferromagnetism in U(H, D)3: 40 years later, Journal of alloys and compounds 219(1995) 1-5.

Google Scholar

[3] T. Gouder, R. Eloirdi, F. Wastin, E. Colineau, J. Rebizant, D. Kolberg, F. Huber, Electronic structure of UH3 thin films prepared by sputter deposition, Phys. Rev. B 70(2004) 235108(1)-235108(5).

DOI: 10.1103/physrevb.70.235108

Google Scholar

[4] R.D. Kolasinski, A.D. Shugard, C. Tewell, D.F. Cowgill, Uranium for hydrogen storage applications: A materials science perspective, Sandia Report 5195(2010) 1-17.

DOI: 10.2172/993617

Google Scholar

[5] G.R. Longhurst, Storage and assay of tritium in STAR. in 7th International Conference on Tritium Science and Technology. (2004).

Google Scholar

[6] M.S. Costantino, J.F. Lakner, R. Bastasz, Synthesis of monolithic uranium hydride and uranium deuteride, Journal of the Less-Common Metals 159(1990) 97-108.

DOI: 10.1016/0022-5088(90)90137-9

Google Scholar

[7] F.L. Guyadec, X. Génin, J.P. Bayle, O. Dugne, A. Duhart-Barone, C. Ablitzer, Pyrophoric behaviour of uranium hydride and uranium powders, Journal of Nuclear Materials 396(2010) 294-302.

DOI: 10.1016/j.jnucmat.2009.11.007

Google Scholar

[8] J.L. Stakebake, Kinetics for the reaction of hydrogen with uranium powder, J. Electroch. Soc. 126(1979) 495-496.

Google Scholar

[9] W.M. Albrecht, M.W. Mallett, Reaction of Hydrogen with Uranium, J. Electroch. Soc. 103(1956) 404-409.

Google Scholar

[10] T. Hashino, Y. Okajima, Mechanism of the reaction of hydrogen with uranium, J. Phys. Chem. 77(1973) 2236-2241.

DOI: 10.1021/j100637a016

Google Scholar

[11] J.B. Condon, Calculated vs. experimental hydrogen reactions rates with uranium, J. Phys. Chem. 79(1975) 392-397.

DOI: 10.1021/j100571a020

Google Scholar

[12] R.E. Rundle, The hydrogen positions in uranium hydride by neutron diffraction, J. Am. Chem. Soc. 73(1951) 4172-4174.

DOI: 10.1021/ja01153a035

Google Scholar

[13] M.L. Palacios, S.H. Taylor, Characterization of uranium oxides using in situ micro-Raman spectroscopy, Applied Spectroscopy 54(2000) 1372-1378.

DOI: 10.1366/0003702001951057

Google Scholar

[14] W.J. Siekhaus, The spatial distribution of native impurities in uranium: Their effect, and the effect of implanted impurities, on gas-surface reactions, Mat. Res. Soc. Symp. Proc. 802(2004) DD5. 10. 1.

Google Scholar

[15] R. Meyer, E. Pietsch, A. Kotowski, U. Erg. -Bd. C, Gmelin Handbuch der Anorganischen Chemie (Springer-Verlag, Berlin 1977).

Google Scholar

[16] S.P. Martin, C.G. Perry, M. Michael, Surface Enhanced Raman Scattering Investigation of Uranium Hydride and Uranium Oxide, e-print arXiv: 0710. 3596.

Google Scholar

[17] M. Moskovits, Surface enhanced raman spectroscopy: A brief retrospective, J. Raman Spect. 36(2005) 485.

DOI: 10.1002/jrs.1362

Google Scholar

[18] M.J. Lipp, Zs. Jenei, J. Park Klepeis, W.J. Evans, Raman investigation of the uranium compounds U3O8, UF4, UH3 and UO3 under pressure at room temperature, LLNL-TR-522251(2011) 1-16.

DOI: 10.2172/1034513

Google Scholar

[19] R.E. Rundle, The structure of uranium hydride and deuteride, J. Am. Chem. Soc. 69(1947) 1719-1723.

DOI: 10.1021/ja01199a043

Google Scholar

[20] Q. Johnson, T.J. Biel, H.R. Leider, Isotopic shifts of the unit cell constants of the a and β tri-hydrides of uranium: UH3, UD3, UT3, Journal of Nuclear Materials 60(1976) 231-233.

DOI: 10.1016/0022-3115(76)90171-9

Google Scholar

[21] W. Bartscher, A. Boeuf, R. Caciuffo, J.M. Fournier, W.F. Kuhs, J. Rebizant, F. Rustichelli, Neutron diffraction study of β-UD3 and β-UH3, Solid state communcations 53(1985) 423-426.

DOI: 10.1016/0038-1098(85)91000-2

Google Scholar

[22] A. C. Lawson, A. Severing, J. W. Ward, C. E. Olsen, J. A. Goldstone, A. Williams, Vibrational and magnetic properties ofβ-UD3, Journal of the Less-Common Metals 158( 1990) 267-274.

DOI: 10.1016/0022-5088(90)90061-n

Google Scholar

[23] D.M. Gruen, Magnetic properties of uranium hydride, J. Chem. Phys. 23(1955) 1708-1710.

Google Scholar

[24] S.T. Lin, A.R. Kaufmann, Magnetic properties of beta-uranium hydride, Phys. Rev. 102(1956) 640-646.

DOI: 10.1103/physrev.102.640

Google Scholar

[25] J.G. Genossar, M. Kuznietz , B. Meerovici, Nuclear magnetic resonance in uranium hydride and deuteride, Phys. Rev. B 1(1970) 1958-(1977).

DOI: 10.1103/physrevb.1.1958

Google Scholar

[26] W.E. Henry, Low-temperature magnetic studies of uranium hydride, uranium deuteride, and uranium dioxide, Phys. Rev. 109(1958), 1976-(1980).

DOI: 10.1103/physrev.109.1976

Google Scholar

[27] C.D. Taylor, T. Lookman, R.S. Lillard, Ab initio calculations of the hydrogen–uranium system: Surface phenomena, absorption, transport and trapping, Acta Mater. 57(2009) 4707-4715.

DOI: 10.1016/j.actamat.2009.06.055

Google Scholar

[28] C.D. Taylor, T. Lookman, R.S. Lillard, Ab initio calculations of the uranium-hydrogen system: Thermodynamics, hydrogen saturation of a-U and phase-transformation to UH3, Acta Mater. 58(2010) 1045-1055.

DOI: 10.1016/j.actamat.2009.10.021

Google Scholar

[29] R.N. R. Mulford, F.H. Ellinger, W.H. Zachariasen, A new form of uranium hydride, J. Am. Chem. Soc. 76(1954) 423-426.

DOI: 10.1021/ja01630a094

Google Scholar

[30] Y. -J. Zhang, B. -T. Wang, Y. Lu, Y. Yang, P. Zhang, Electronic, mechanical and thermodynamic properties of a-UH3: A comparative study by using the LDA and LDA+U approaches, Journal of Nuclear Materials 430(2012) 137-141.

DOI: 10.1016/j.jnucmat.2012.07.002

Google Scholar

[31] C. Zhang, H. Jiang, H. -L. Shi, G. -H. Zhong, Y. -H. Su, Mechanical and thermodynamic properties of a-UH3 under high pressure, Journal of Alloys and Compounds 604(2014) 171-174.

DOI: 10.1016/j.jallcom.2014.03.071

Google Scholar

[32] P. Zhang, B. -T. Wang, X. -G. Zhao, Ground-state properties and high-pressure behavior of plutonium dioxide: Density functional theory calculations, Phys. Rev. B 82(2010) 144110(1)-144110(14).

DOI: 10.1103/physrevb.82.144110

Google Scholar

[33] J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23(1981) 5048-5079.

DOI: 10.1103/physrevb.23.5048

Google Scholar

[34] P.E. Blöchl, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B 50(1994) 16223-16233.

DOI: 10.1103/physrevb.49.16223

Google Scholar

[35] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[36] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[37] S.L. Dudarev, D.N. Manh, A.P. Sutton, Effect of Mott-Hubbard correlations on the electronic structure and structural stability of uranium dioxide, Philos. Mag. B 75(1997) 613-628.

DOI: 10.1080/13642819708202343

Google Scholar

[38] S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57(1998) 1505-1509.

DOI: 10.1103/physrevb.57.1505

Google Scholar

[39] S.L. Dudarev, M.R. Castell, G.A. Botton, S.Y. Savrasov, C. Muggelberg, G.A.D. Briggs, A.P. Sutton, D.T. Goddard, Understanding STM images and EELS spectra of oxides with strongly correlated electrons: a comparison of nickel and uranium oxides, Micron 31(2000).

DOI: 10.1016/s0968-4328(99)00115-8

Google Scholar

[40] X. Gonze, C. Lee, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B 55(1997) 10355-10368.

DOI: 10.1103/physrevb.55.10355

Google Scholar

[41] M.J. Verstraete, M. Torrent, F. Jollet, G. Zérah, X. Gonze1, Density functional perturbation theory with spin-orbit coupling: Phonon band structure of lead, Phys. Rev. B 78(2008) 045119(1)-045119(9).

DOI: 10.1103/physrevb.78.045119

Google Scholar

[42] R. Shaltaf, X. Gonze, Lattice dynamics and specific heat of a-GeTe: Theoretical and experimental study, Phys. Rev. B 79(2009) 075204(1)-075204(7).

Google Scholar

[43] Y. Gillet, M. Giantomassi, X. Gonze, First-principles study of excitonic effects in Raman intensities, Phys. Rev. B 88(2013) 094305(1)-094305(9).

DOI: 10.1103/physrevb.88.094305

Google Scholar

[44] T. Atsushi, O. Fumiyasu, T. Isao, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(2008) 134106(1)-134106(9).

Google Scholar

[45] A.C. Switendick, Electronic energy band structure of UH3, J. Less Common Met. 88(1982) 257-262.

DOI: 10.1016/0022-5088(82)90229-6

Google Scholar

[46] Y.B. Barash, J. Barak, M.H. Mintz, NMR study of hydrogen in ferromagnetic β-UH3, Phys. Rev. B 29 (1984) 6096-6104.

Google Scholar

[47] R.F.W. Bader: Atoms in Molecules: A Quantum Theory (Oxford University Press, New York 1990).

Google Scholar

[48] M.H. Brodsky, E. Burstein, Infrared lattice vibrations of single crystal lithium hydride and some of its isotopic derivations, J. Phys. Chem. Solids 28(1967) 1655-1668.

DOI: 10.1016/0022-3697(67)90139-4

Google Scholar

[49] A. Togo, L. Chaput, I. Tanaka and G. Hug, First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2, Phys. Rev. B 81(2010) 174301(1)-174301(6).

Google Scholar