Indenter Size Effect on the Reversible Incipient Plasticity of Al (001) Surface Studied via Quasicontinuum Simulations

Article Preview

Abstract:

Indenter size effect on the reversible incipient plasticity of Al (001) surface is studied by quasicontinuum simulations. Two cylindrical indenters with the radii 2.5nm and 17.5nm are used to penetrate the surface respectively, in displacement-control in steps of 0.02 nm. Results show that the plasticity under the small indenter is reversible, since it is dominated by the nucleation of a thin deformation twin, which can be fully removed after withdrawal of the indenter, due to the imaging force and stacking fault energy. Under the large indenter, multiple slip systems are activated simultaneously when incipient plasticity occurs, a few twin, dislocation and stacking fault ribbons still remain under the surface when the indenter has been completely retracted, thus the plasticity is irreversible.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

706-711

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. L. Kelchner, S. J. Plimpton, J. C. Hamilton, Dislocation nucleation and defect structure during surface indentation, Phys. Rev. B. 58 (1998) 11085-11088.

DOI: 10.1103/physrevb.58.11085

Google Scholar

[2] O. Rodríguez de la Fuente, J. A. Zimmerman, M. A. González, J. de la Figuera, J. C. Hamilton, Woei Wu Pai, J. M. Rojo, Dislocation Emission around Nanoindentations on a (001) fcc Metal Surface Studied by Scanning Tunneling Microscopy and Atomistic Simulations, Phys. Rev. Lett. 88 (2001).

DOI: 10.1103/physrevlett.88.036101

Google Scholar

[3] J. Knap,M. Ortiz, Effect of Indenter-Radius Size on Au(001) Nanoindentation, Phys. Rev. Lett. 90 (2003) 226102.

DOI: 10.1103/physrevlett.90.226102

Google Scholar

[4] S. H. Kim, D. B. Asay, M. T. Dugger, Nanotribology and MEMS, nanotoday. 2 (2007) 22-29.

Google Scholar

[5] J. Jin, S. A. Shevlin, Z. X. Guo, Multiscale simulation of onset plasticity during nanoindentation of Al (001) surface, Acta Mater. 56 (2008) 4358-4368.

DOI: 10.1016/j.actamat.2008.04.064

Google Scholar

[6] V. Navarro, O. Rodrı´guez de la Fuente, A. Mascaraque, J. M. Rojo, Uncommon Dislocation Processes at the Incipient Plasticity of Stepped Gold Surfaces, Phys. Rev. Lett. 100 (2008) 105504.

DOI: 10.1103/physrevlett.100.105504

Google Scholar

[7] G. Ziegenhain,H. M. Urbassek, Reversible plasticity under nanoindentation of atomically flat and stepped surfaces of fcc metals, Phil. Mag. Lett. 89 (2009) 717–723.

DOI: 10.1080/09500830903272900

Google Scholar

[8] Y. F. Shao, X. Zhao, J. H. Li, S. Q. Wang, Multiscale simulations on the reversible plasticity of Al (001) surface under a nano-sized indenter, Comput. Mater. Sci. 67 (2013) 346–352.

DOI: 10.1016/j.commatsci.2012.09.028

Google Scholar

[9] E. B. Tadmor, M. Ortiz, R. Phillips, Quasicontinuum analysis of defects in solids, Philos. Mag. A. 73 (1996) 1529-1563.

DOI: 10.1080/01418619608243000

Google Scholar

[10] E. B. Tadmor, R. Phillips, M. Ortiz, Mixed Atomistic and Continuum Models of Deformation in Solids, Langmuir. 12 (1996) 4529-4534.

DOI: 10.1021/la9508912

Google Scholar

[11] V. B. Shenoy, R. Miller, E. B. Tadmor, R. Phillips, M. Ortiz, Quasicontinuum Models of Interfacial Structure and Deformation, Phys. Rev. Lett. 80 (1998) 742-745.

DOI: 10.1103/physrevlett.80.742

Google Scholar

[12] V. B. Shenoy, R. Miller, E. B. Tadmor, D. Rodney, R. Phillips, M. Ortiz, An adaptive finite element approach to atomic-scale mechanics the quasicontinuum method, J Mech. Phys. Solids. 47 (1999) 611-642.

DOI: 10.1016/s0022-5096(98)00051-9

Google Scholar

[13] M. S. Daw,M. I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B. 29 (1984) 6443-6453.

DOI: 10.1103/physrevb.29.6443

Google Scholar

[14] R. E. Miller,E. B. Tadmor, The Quasicontinuum Method: Overview, applications and current directions, J. Computer-Aided Mater. Design. 9 (2002) 203-239.

Google Scholar

[15] A. F. Voter,S. P. Chen, Accurate interatomic potentials for Ni, Al and Ni_3Al, Mater. Res. Soc. Symp. Proc. 82 (1987) 175-180.

Google Scholar

[16] J. Li, AtomEye: an efficient atomistic configuration viewer, Modeling Simul. Mater. Sci. Eng. 11 (2003) 173-177.

DOI: 10.1088/0965-0393/11/2/305

Google Scholar

[17] J. D. Honeycutt,H. C. Andersen, Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters., J. Phys. Chem. 91 (1987) 4950-4963.

DOI: 10.1021/j100303a014

Google Scholar

[18] E. B. Tadmor, R. Miller, R. Phillips, Nanoindentation and incipient plasticity, J. Mater. Res. 14 (1999) 2233-2250.

DOI: 10.1557/jmr.1999.0300

Google Scholar

[19] K. J. Van Vliet, J. Li, T. Zhu, S. Yip, S. Suresh, Quantifying the early stages of plasticity through nanoscale experiments and simulations, Phys. Rev. B. 67 (2003) 104105.

DOI: 10.1103/physrevb.67.104105

Google Scholar

[20] D. Saraev,R. E. Miller, Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings, Acta Mater. 54 (2006) 33-45.

DOI: 10.1016/j.actamat.2005.08.030

Google Scholar

[21] V. Dupont,F. Sansoz, Quasicontinuum study of incipient plasticity under nanoscale contact in nanocrystalline aluminum, Acta Mater. 56 (2008) 6013-6026.

DOI: 10.1016/j.actamat.2008.08.014

Google Scholar