[1]
C. L. Kelchner, S. J. Plimpton, J. C. Hamilton, Dislocation nucleation and defect structure during surface indentation, Phys. Rev. B. 58 (1998) 11085-11088.
DOI: 10.1103/physrevb.58.11085
Google Scholar
[2]
O. Rodríguez de la Fuente, J. A. Zimmerman, M. A. González, J. de la Figuera, J. C. Hamilton, Woei Wu Pai, J. M. Rojo, Dislocation Emission around Nanoindentations on a (001) fcc Metal Surface Studied by Scanning Tunneling Microscopy and Atomistic Simulations, Phys. Rev. Lett. 88 (2001).
DOI: 10.1103/physrevlett.88.036101
Google Scholar
[3]
J. Knap,M. Ortiz, Effect of Indenter-Radius Size on Au(001) Nanoindentation, Phys. Rev. Lett. 90 (2003) 226102.
DOI: 10.1103/physrevlett.90.226102
Google Scholar
[4]
S. H. Kim, D. B. Asay, M. T. Dugger, Nanotribology and MEMS, nanotoday. 2 (2007) 22-29.
Google Scholar
[5]
J. Jin, S. A. Shevlin, Z. X. Guo, Multiscale simulation of onset plasticity during nanoindentation of Al (001) surface, Acta Mater. 56 (2008) 4358-4368.
DOI: 10.1016/j.actamat.2008.04.064
Google Scholar
[6]
V. Navarro, O. Rodrı´guez de la Fuente, A. Mascaraque, J. M. Rojo, Uncommon Dislocation Processes at the Incipient Plasticity of Stepped Gold Surfaces, Phys. Rev. Lett. 100 (2008) 105504.
DOI: 10.1103/physrevlett.100.105504
Google Scholar
[7]
G. Ziegenhain,H. M. Urbassek, Reversible plasticity under nanoindentation of atomically flat and stepped surfaces of fcc metals, Phil. Mag. Lett. 89 (2009) 717–723.
DOI: 10.1080/09500830903272900
Google Scholar
[8]
Y. F. Shao, X. Zhao, J. H. Li, S. Q. Wang, Multiscale simulations on the reversible plasticity of Al (001) surface under a nano-sized indenter, Comput. Mater. Sci. 67 (2013) 346–352.
DOI: 10.1016/j.commatsci.2012.09.028
Google Scholar
[9]
E. B. Tadmor, M. Ortiz, R. Phillips, Quasicontinuum analysis of defects in solids, Philos. Mag. A. 73 (1996) 1529-1563.
DOI: 10.1080/01418619608243000
Google Scholar
[10]
E. B. Tadmor, R. Phillips, M. Ortiz, Mixed Atomistic and Continuum Models of Deformation in Solids, Langmuir. 12 (1996) 4529-4534.
DOI: 10.1021/la9508912
Google Scholar
[11]
V. B. Shenoy, R. Miller, E. B. Tadmor, R. Phillips, M. Ortiz, Quasicontinuum Models of Interfacial Structure and Deformation, Phys. Rev. Lett. 80 (1998) 742-745.
DOI: 10.1103/physrevlett.80.742
Google Scholar
[12]
V. B. Shenoy, R. Miller, E. B. Tadmor, D. Rodney, R. Phillips, M. Ortiz, An adaptive finite element approach to atomic-scale mechanics the quasicontinuum method, J Mech. Phys. Solids. 47 (1999) 611-642.
DOI: 10.1016/s0022-5096(98)00051-9
Google Scholar
[13]
M. S. Daw,M. I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B. 29 (1984) 6443-6453.
DOI: 10.1103/physrevb.29.6443
Google Scholar
[14]
R. E. Miller,E. B. Tadmor, The Quasicontinuum Method: Overview, applications and current directions, J. Computer-Aided Mater. Design. 9 (2002) 203-239.
Google Scholar
[15]
A. F. Voter,S. P. Chen, Accurate interatomic potentials for Ni, Al and Ni_3Al, Mater. Res. Soc. Symp. Proc. 82 (1987) 175-180.
Google Scholar
[16]
J. Li, AtomEye: an efficient atomistic configuration viewer, Modeling Simul. Mater. Sci. Eng. 11 (2003) 173-177.
DOI: 10.1088/0965-0393/11/2/305
Google Scholar
[17]
J. D. Honeycutt,H. C. Andersen, Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters., J. Phys. Chem. 91 (1987) 4950-4963.
DOI: 10.1021/j100303a014
Google Scholar
[18]
E. B. Tadmor, R. Miller, R. Phillips, Nanoindentation and incipient plasticity, J. Mater. Res. 14 (1999) 2233-2250.
DOI: 10.1557/jmr.1999.0300
Google Scholar
[19]
K. J. Van Vliet, J. Li, T. Zhu, S. Yip, S. Suresh, Quantifying the early stages of plasticity through nanoscale experiments and simulations, Phys. Rev. B. 67 (2003) 104105.
DOI: 10.1103/physrevb.67.104105
Google Scholar
[20]
D. Saraev,R. E. Miller, Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings, Acta Mater. 54 (2006) 33-45.
DOI: 10.1016/j.actamat.2005.08.030
Google Scholar
[21]
V. Dupont,F. Sansoz, Quasicontinuum study of incipient plasticity under nanoscale contact in nanocrystalline aluminum, Acta Mater. 56 (2008) 6013-6026.
DOI: 10.1016/j.actamat.2008.08.014
Google Scholar