[1]
J. P. Hirth,J. Lothe, Theory of dislocation. 1982, New York: Wiley.
Google Scholar
[2]
Z. W. Shan, J. M. K. Wiezorek, E. A. Stach, D. M. Follstaedt, J. A. Knapp, S. X. Mao, Dislocation Dynamics in Nanocrystalline Nickel, Phys. Rev. Lett. 98 (2007) 095502.
DOI: 10.1103/physrevlett.98.095502
Google Scholar
[3]
L. H. Wang, X. D. Han, P. Liu, Y. H. Yue, Z. Zhang, E. Ma, In Situ Observation of Dislocation Behavior in Nanometer Grains, Phys. Rev. Lett. 105 (2010) 135501.
DOI: 10.1103/physrevlett.105.135501
Google Scholar
[4]
G. Lu, N. Kioussis, V. V. Bulatov, E. Kaxiras, Dislocation core properties of aluminum: a first-principles study, Mater. Sci. Eng. A. 309-310 (2001) 142-147.
DOI: 10.1016/s0921-5093(00)01711-1
Google Scholar
[5]
G. Schoeck, The core structure of dislocations: Peierls model vs. atomic simulation, Acta Mater. 54 (2006) 4865-4870.
DOI: 10.1016/j.actamat.2006.06.023
Google Scholar
[6]
C. Woodward, D. R. Trinkle, L. G. Hector Jr, D. L. Olmsted, Prediction of Dislocation Cores in Aluminum from Density Functional Theory, Phys. Rev. Lett. 100 (2008) 045507.
DOI: 10.1103/physrevlett.100.045507
Google Scholar
[7]
E. Clouet, L. Ventelon, F. Willaime, Dislocation Core Energies and Core Fields from First Principles, Phys. Rev. Lett. 102 (2009) 055502.
DOI: 10.1103/physrevlett.102.055502
Google Scholar
[8]
R. Wang, S. F. Wang, X. Z. Wu, Edge dislocation core structures in FCC metals determined from ab initio calculations combined with the improved Peierls–Nabarro equation, Phys. Scr. 83 (2011) 045604.
DOI: 10.1088/0031-8949/83/04/045604
Google Scholar
[9]
C. W. Zhao, Y. M. Xing, C. E. Zhou, P. C. Bai, Experimental examination of displacement and strain fields in an edge dislocation core, Acta Mater. 56 (2008) 2570-2575.
DOI: 10.1016/j.actamat.2008.01.045
Google Scholar
[10]
C. W. Zhao, Y. M. Xing, P. C. Bai, Experimental verification of Foreman dislocation model, Chin. Phys. B. 18 (2009) 2464-2468.
Google Scholar
[11]
R. Peierls, The size of a dislocation, Proc. Phys. Soc. 52 (1940) 34.
Google Scholar
[12]
F. R. N. Nabarro, Dislocations in a simple cubic lattice Proc. Phys. Soc. 59 (1947) 256.
DOI: 10.1088/0959-5309/59/2/309
Google Scholar
[13]
A. J. Foreman, M. A. Jaswon, J. K. Wood, Factors Controlling Dislocation Widths, Proc. Phys. Soc. A. 64 (1951) 156-163.
DOI: 10.1088/0370-1298/64/2/307
Google Scholar
[14]
J. Zimmermann, Continuum and atomistic modelling of dislocation nucleation at crystal surface ledges. 1999: (Ph.D. Thesis) (Stanford University).
Google Scholar
[15]
M. J. Buehler, H. G. Gao, Y. G. Huang, Atomistic and continuum studies of stress and strain fields near a rapidly propagating crack in a harmonic lattice, Theor. Appl. Fract. Mec.,. 41 (2004) 21-42.
DOI: 10.1016/j.tafmec.2003.11.022
Google Scholar
[16]
E. B. Tadmor, M. Ortiz, R. Phillips, Quasicontinuum analysis of defects in solids, Philos. Mag. A. 73 (1996) 1529-1563.
DOI: 10.1080/01418619608243000
Google Scholar
[17]
E. B. Tadmor, R. Phillips, M. Ortiz, Mixed atomistic and continuum models of deformation in Solids, Langmuir. 12 (1996) 4529-4534.
DOI: 10.1021/la9508912
Google Scholar
[18]
M. S. Daw,M. I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B. 29 (1984) 6443-6453.
DOI: 10.1103/physrevb.29.6443
Google Scholar
[19]
R. E. Miller,E. B. Tadmor, The Quasicontinuum Method: Overview, applications and current directions, J. Computer-Aided Mater. Design. 9 (2002) 203-239.
Google Scholar
[20]
E. B. Tadmor,R. E. Miller, The theory and implementation of the quasicontinuum method, in Handbook of Materials Modeling, Part A - Methods, S. Yip, Editor. 2005, Springer-Verlag: New York. pp.663-682.
DOI: 10.1007/978-1-4020-3286-8_34
Google Scholar
[21]
Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, J. D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B. 63 (2001) 224106.
DOI: 10.1103/physrevb.63.224106
Google Scholar
[22]
G. Grochola, S. P. Russo, I. K. Snook, On fitting a gold embedded atom method potential using the force matching method, J. Chem. Phys. 123 (2005) 204719.
DOI: 10.1063/1.2124667
Google Scholar
[23]
Y. F. Shao, X. Yang, J. H. Li, X. Zhao, Atomistic simulation study on the local strain fields around an extended edge dislocation in copper, Acta Physica Sinica. 63 (2014) 076103.
DOI: 10.7498/aps.63.076103
Google Scholar
[24]
J. H. Warner, E. R. Margine, M. Mukai, A. W. Robertson, F. Giustino, A. I. Kirkland, Dislocation-Driven Deformations in Graphene, Science. 337 (2012) 209-211.
DOI: 10.1126/science.1217529
Google Scholar