Strain Fields around Dislocation Cores Studied by Analyzing Coordinates of Discrete Atoms

Article Preview

Abstract:

Dislocation core structures in Au and Cu crystals are investigated by means of quasicontinuum simulations combined with the embedded atom method potentials. A dislocation pair in a graphene sheet, which is observed by Warner et al. experimentally, is also analyzed in the present work. The strain fields around these dislocations in Au, Cu, and graphene crystals are calculated by analyzing the coordinates of discrete atoms, which is a strain tensor calculation method proposed by Zimmerman et al., and compared with theoretical predictions based on Foreman dislocation model. It is shown that the strain fields given by Zimmerman theory are completely suitable for describing the dislocation core structures of Au, Cu and graphene crystals. However, compared with the results of Au and Cu, the Zimmerman strain field in the vicinity of graphene dislocation core is a little less accurate, possibly due to the effect of lattice symmetry of graphene, which needs to be clarified in the future study.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

712-718

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. P. Hirth,J. Lothe, Theory of dislocation. 1982, New York: Wiley.

Google Scholar

[2] Z. W. Shan, J. M. K. Wiezorek, E. A. Stach, D. M. Follstaedt, J. A. Knapp, S. X. Mao, Dislocation Dynamics in Nanocrystalline Nickel, Phys. Rev. Lett. 98 (2007) 095502.

DOI: 10.1103/physrevlett.98.095502

Google Scholar

[3] L. H. Wang, X. D. Han, P. Liu, Y. H. Yue, Z. Zhang, E. Ma, In Situ Observation of Dislocation Behavior in Nanometer Grains, Phys. Rev. Lett. 105 (2010) 135501.

DOI: 10.1103/physrevlett.105.135501

Google Scholar

[4] G. Lu, N. Kioussis, V. V. Bulatov, E. Kaxiras, Dislocation core properties of aluminum: a first-principles study, Mater. Sci. Eng. A. 309-310 (2001) 142-147.

DOI: 10.1016/s0921-5093(00)01711-1

Google Scholar

[5] G. Schoeck, The core structure of dislocations: Peierls model vs. atomic simulation, Acta Mater. 54 (2006) 4865-4870.

DOI: 10.1016/j.actamat.2006.06.023

Google Scholar

[6] C. Woodward, D. R. Trinkle, L. G. Hector Jr, D. L. Olmsted, Prediction of Dislocation Cores in Aluminum from Density Functional Theory, Phys. Rev. Lett. 100 (2008) 045507.

DOI: 10.1103/physrevlett.100.045507

Google Scholar

[7] E. Clouet, L. Ventelon, F. Willaime, Dislocation Core Energies and Core Fields from First Principles, Phys. Rev. Lett. 102 (2009) 055502.

DOI: 10.1103/physrevlett.102.055502

Google Scholar

[8] R. Wang, S. F. Wang, X. Z. Wu, Edge dislocation core structures in FCC metals determined from ab initio calculations combined with the improved Peierls–Nabarro equation, Phys. Scr. 83 (2011) 045604.

DOI: 10.1088/0031-8949/83/04/045604

Google Scholar

[9] C. W. Zhao, Y. M. Xing, C. E. Zhou, P. C. Bai, Experimental examination of displacement and strain fields in an edge dislocation core, Acta Mater. 56 (2008) 2570-2575.

DOI: 10.1016/j.actamat.2008.01.045

Google Scholar

[10] C. W. Zhao, Y. M. Xing, P. C. Bai, Experimental verification of Foreman dislocation model, Chin. Phys. B. 18 (2009) 2464-2468.

Google Scholar

[11] R. Peierls, The size of a dislocation, Proc. Phys. Soc. 52 (1940) 34.

Google Scholar

[12] F. R. N. Nabarro, Dislocations in a simple cubic lattice Proc. Phys. Soc. 59 (1947) 256.

DOI: 10.1088/0959-5309/59/2/309

Google Scholar

[13] A. J. Foreman, M. A. Jaswon, J. K. Wood, Factors Controlling Dislocation Widths, Proc. Phys. Soc. A. 64 (1951) 156-163.

DOI: 10.1088/0370-1298/64/2/307

Google Scholar

[14] J. Zimmermann, Continuum and atomistic modelling of dislocation nucleation at crystal surface ledges. 1999: (Ph.D. Thesis) (Stanford University).

Google Scholar

[15] M. J. Buehler, H. G. Gao, Y. G. Huang, Atomistic and continuum studies of stress and strain fields near a rapidly propagating crack in a harmonic lattice, Theor. Appl. Fract. Mec.,. 41 (2004) 21-42.

DOI: 10.1016/j.tafmec.2003.11.022

Google Scholar

[16] E. B. Tadmor, M. Ortiz, R. Phillips, Quasicontinuum analysis of defects in solids, Philos. Mag. A. 73 (1996) 1529-1563.

DOI: 10.1080/01418619608243000

Google Scholar

[17] E. B. Tadmor, R. Phillips, M. Ortiz, Mixed atomistic and continuum models of deformation in Solids, Langmuir. 12 (1996) 4529-4534.

DOI: 10.1021/la9508912

Google Scholar

[18] M. S. Daw,M. I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B. 29 (1984) 6443-6453.

DOI: 10.1103/physrevb.29.6443

Google Scholar

[19] R. E. Miller,E. B. Tadmor, The Quasicontinuum Method: Overview, applications and current directions, J. Computer-Aided Mater. Design. 9 (2002) 203-239.

Google Scholar

[20] E. B. Tadmor,R. E. Miller, The theory and implementation of the quasicontinuum method, in Handbook of Materials Modeling, Part A - Methods, S. Yip, Editor. 2005, Springer-Verlag: New York. pp.663-682.

DOI: 10.1007/978-1-4020-3286-8_34

Google Scholar

[21] Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, J. D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B. 63 (2001) 224106.

DOI: 10.1103/physrevb.63.224106

Google Scholar

[22] G. Grochola, S. P. Russo, I. K. Snook, On fitting a gold embedded atom method potential using the force matching method, J. Chem. Phys. 123 (2005) 204719.

DOI: 10.1063/1.2124667

Google Scholar

[23] Y. F. Shao, X. Yang, J. H. Li, X. Zhao, Atomistic simulation study on the local strain fields around an extended edge dislocation in copper, Acta Physica Sinica. 63 (2014) 076103.

DOI: 10.7498/aps.63.076103

Google Scholar

[24] J. H. Warner, E. R. Margine, M. Mukai, A. W. Robertson, F. Giustino, A. I. Kirkland, Dislocation-Driven Deformations in Graphene, Science. 337 (2012) 209-211.

DOI: 10.1126/science.1217529

Google Scholar