[1]
H. Bhadeshia, Steels for bearings, Prog. Mater. Sci. 57(2012) 268-435.
Google Scholar
[2]
Bhadeshia Harry, Robert Honeycombe, Steels: Microstructure and Properties, Elsevier Ltd., London (2011).
Google Scholar
[3]
S.S. Gill, J. Singh, R. Singh, Effect of cryogenic treatment on AISI M2 high speed steel: metallurgical and mechanical characterization, J. Mater. Eng. Perform. 21(2012), 1320-1326.
DOI: 10.1007/s11665-011-0032-z
Google Scholar
[4]
R.F. Barron, Cryogenics, Heat Treat. 6(1974) 14-17.
Google Scholar
[5]
S. Harish, A. Bensely, D.L. Mohan, Microstructural study of cryogenically treated En 31 bearing steel, Journal of materials processing technology. 209(2009) 3351-3357.
DOI: 10.1016/j.jmatprotec.2008.07.046
Google Scholar
[6]
S. Li, L. Deng, X. Wu, Influence of deep cryogenic treatment on microstructure and evaluation by internal friction of a tool steel, Cryogenics. 50(2010) 754-758.
DOI: 10.1016/j.cryogenics.2010.09.002
Google Scholar
[7]
S. Li, N. Min, L. Deng, Influence of deep cryogenic treatment on internal friction behavior in the process of tempering, Mater. Sci. Eng. A. 528(2011) 1247-1250.
DOI: 10.1016/j.msea.2010.10.012
Google Scholar
[8]
S. Li, N. Min, J. Li, Experimental verification of segregation of carbon and precipitation of carbides due to deep cryogenic treatment for tool steel by internal friction method, Mater. Sci. Eng. A. 575(2013) 51-60.
DOI: 10.1016/j.msea.2013.03.070
Google Scholar
[9]
S. Zhirafar, A. Rezaeian, M. Pugh, Effect of cryogenic treatment on the mechanical properties of 4340 steel, J. Mater. Process. Technol. 186(2007) 298-303.
DOI: 10.1016/j.jmatprotec.2006.12.046
Google Scholar
[10]
S. Li, L. Deng, X. Wu, Effect of deep cryogenic treatment on internal friction behaviors of cold work die steel and their experimental explanation by coupling model, Mater. Sci. Eng. A. 527(2010) 7950-7954.
DOI: 10.1016/j.msea.2010.08.086
Google Scholar
[11]
H.W. Yen, P.Y. Chen, C.Y. Huang, Interphase precipitation of nanometer-sized carbides in a titanium–molybdenum-bearing low-carbon steel, Acta Mater. 59(2011) 6264-6274.
DOI: 10.1016/j.actamat.2011.06.037
Google Scholar
[12]
S. Morito, H. Tanaka, R. Konishi, The morphology and crystallography of lath martensite in Fe-C alloys, Acta Mater. 51(2003) 1789-1799.
DOI: 10.1016/s1359-6454(02)00577-3
Google Scholar
[13]
S. Morito, X. Huang, T. Furuhara, The morphology and crystallography of lath martensite in alloy steels, Acta Mater. 54(2006) 5323-5331.
DOI: 10.1016/j.actamat.2006.07.009
Google Scholar
[14]
H. Kitahara, R. Ueji, N. Tsuj, Crystallographic features of lath martensite in low-carbon steel, Acta Mater. 54(2006) 1279-1288.
DOI: 10.1016/j.actamat.2005.11.001
Google Scholar
[15]
O.N. Mohanty, On the stabilization of retained austenite: mechanism and kinetics, Mater. Sci. Eng. B. 32(1995) 267-278.
Google Scholar
[16]
E. Robert, R. Hill, R. Abbaschian, Physical metallurgy principles, PWS-Kent, 3rd Ed, Boston (1992).
Google Scholar
[17]
M.E. Blanter, Thermal stabilization of austenite, Met. Sci. Heat Treat. 14(1972) 439-440.
DOI: 10.1007/bf00649831
Google Scholar
[18]
J.Y. Chen, J. Su, Y.L. Gao, On the remaining austenite of G50 steel, Proceedings of the 3th China Steel Conference. Metallurgical Industry Press, Beijing (2001).
Google Scholar
[19]
S.D. Antolovich, B. Singh, On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels, Metall. Mater. Trans. B. 2(1971) 2135-2141.
DOI: 10.1007/bf02917542
Google Scholar
[20]
K. Wang, M.S. Yang, G. Fan, F. Yu, J. Bao, W. K. Yan, Investigation on mechanism of strength-toughening of heat and corrosion resistant bearing steel 16Cr14Co12Mo5, Iron & Steel, 46 (2011) 75.
Google Scholar
[21]
J.P. Naylor, The influence of the lath morphology on the yield stress and transition temperature of martensitic-bainitic steels, Metall. Trans. A. 10(1979) 861-873.
DOI: 10.1007/bf02658305
Google Scholar