First-Principle Investigation on the Secondary Bond in Stable mGeTe·nSb2Te3 Pseudo-Binary Chalcogenides

Article Preview

Abstract:

The Te-Te van der Waals-type secondary bond in stable mGeTe·nSb2Te3 (GST) pseudo-binary chalcogenides was investigated by means of ab initio calculations. The generalized gradient approximation of Perdew-Burke-Ernzerhof pseudopotential describes the Te-Te secondary bond very well. Whereas the local density approximation pseudopotential over-estimates the bond energy by underestimating the repulsive forces between the adjacent Te atoms. The electron localization function illustrates the chemical bonding nature of the Te-Te secondary bond. Our present results will shed insights on the secondary bonds in GST phase change materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

778-783

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Wuttig and N. Yamada: Nature Mater. 6 (2007) 824-832.

Google Scholar

[2] B. Hallstedt, D. Music, and Z. Sun: Int. J. Quantum Chem. 97 (2006) 539.

Google Scholar

[3] D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebaure and M. Wuttig: Nature Mater. 7 (2008) 972-977.

DOI: 10.1038/nmat2330

Google Scholar

[4] J. L. F. Da Silva, A. Walsh, and H. Lee: Phys. Rev. B. 78 (2008) 224111.

Google Scholar

[5] Z. Sun, J. Zhou, and R. Ahuja: Phys. Rev. Lett. 96 (2006) 55507.

Google Scholar

[6] Z. Sun, J. Zhou, and R. Ahuja: Phys. Rev. Lett. 98 (2007) 55505.

Google Scholar

[7] Z. Sun, J. Zhou, A. Blomqvist, B. Johansson, and R. Ahuja: Appl. Phys. Lett. 93 (2008) 061913.

Google Scholar

[8] Z. Sun, J. Zhou, H. -J. Shin, A. Blomqvist, and R. Ahuja: Appl. Phys. Lett. 93 (2008) 241908.

Google Scholar

[9] J. -J. Kim, K. Kobayashi, E. Ikenaga, M. Kobata, S. Ueda, T. Matsunaga, K. Kifune, R. Kojima, and N. Yamada: Phys. Rev. B. 76 (2007) 115124.

Google Scholar

[10] E. M. Vinod, K. Ramesh, R. Ganesan, and K. S. Sangunni: Appl. Phys. Lett. 104 (2014) 063505.

Google Scholar

[11] K. Yang, W. Setyawan, S. Wang, M. B. Nardelli, and S. Curtarolo: Nature Mater. 11 (2012) 614-619.

Google Scholar

[12] J. Kim, J. Kim, and S. -H. Jhi: Phys. Rev. B. 82 (2010) 201312.

Google Scholar

[13] B. Sa, J. Zhou, Z. Song, Z. Sun, and R. Ahuja: Phys. Rev. B. 84 (2011) 085130.

Google Scholar

[14] B. Sa, J. Zhou, Z. Sun, and R. Ahuja: Europhys. Lett. 97 (2012) 27003.

Google Scholar

[15] X. -L. Qi and S. -C. Zhang: Phys. Today. 63 (2010) 33.

Google Scholar

[16] B. Sa, N. Miao, J. Zhou, Z. Sun, and R. Ahuja: Phys. Chem. Chem. Phys. 12 (2010) 1585-1588.

Google Scholar

[17] Z. Sun, Y. Pan, J. Zhou, B. Sa, and R. Ahuja: Phys. Rev. B. 83 (2011) 113201.

Google Scholar

[18] T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota and M. Takata: Chem. Mater. 20 (2008) 5750-5755.

Google Scholar

[19] J. Zhou, Z. M. Sun, Y. C. Pan, Z. T. Song, and R. Ahuja: Europhys. Lett. 95 (2011) 27002.

Google Scholar

[20] B. Sa, Z. Sun, T. Kaewmaraya, J. Zhou, and R. Ahuja: Sci. Adv. Mater. 5 (2013) 1493-1497.

Google Scholar

[21] B. Sa, J. Zhou, R. Ahuja, and Z. Sun: Comput. Mater. Sci. 82 (2014) 66-69.

Google Scholar

[22] Z. Sun, J. Zhou, A. Blomqvist, B. Johansson, and R. Ahuja: Phys. Rev. Lett. 102 (2009) 075504.

Google Scholar

[23] J. Hafner: J. Comput. Chem. 29 (2008) 2044-(2078).

Google Scholar

[24] J. P. Perdew and Y. Wang: Phys. Rev. B. 45 (1992) 13244.

Google Scholar

[25] J. P. Perdew, K. Burke, and Y. Wang: Phys. Rev. B. 54 (1996) 16533.

Google Scholar

[26] J. Poater, M. Duran, M. Sola, and B. Silvi: Chem. Rev. 105 (2005) 3911-3947.

Google Scholar

[27] M. C. Schabel and J. L. Martins: Phys. Rev. B. 46 (1992) 7185.

Google Scholar