A Comparative Study of Metal Oxides (CaO, CuO and CaO/CuO) Effects on the Morphology and Thermal Stability of PANI Nanofibers

Article Preview

Abstract:

The comparison of the influence of CaO and CuO alone and combined CaO/CuO on the diameter, surface morphology and thermal stability of polyaniline (PANI) nanofibers is reported. The possible incorporation of CaO and CuO in PANI was revealed by both fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible spectroscopy (UV–vis). It was found that the diameter of PANI nanofibers varied for the addition of CaO and CuO alone compared to their combined use. Field emission scanning electron microscopy (FESEM) showed that the addition of CaO, CuO and CaO/CuO consistently produce composite material in nanofibers structures. This nanofibers shows regular and uniform surface morphology and without secondary growth and agglomeration of the primary nanofibers. Thermogravimetric analysis (TGA) data showed better thermal stability for all composite materials as compared to PANI nanofibers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

262-267

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. G. MacDiarmid, A novel role for organic polymers, Angew. Chem. Int. Ed. 40, (2001) 2581-2590.

DOI: 10.1002/1521-3773(20010716)40:14<2581::aid-anie2581>3.0.co;2-2

Google Scholar

[2] X. W. Li, X. H. Li, N. Dai, G. C. Wang, Z. Wang, Preparation and electrochemical capacitance performances of super-hydrophilic conducting polyaniline, J. Power. Sources. 195, (2010) 5417-5421.

DOI: 10.1016/j.jpowsour.2010.03.034

Google Scholar

[3] M. Jiang, S. Zhu, Z. Zhou, A. Zhao, J. Lu, Effect of Ni2+ as a Codopant on the structure, morphology and conductivity of nanostructured polyaniline, J. Appl. Polym. Sci. 121, (2011) 3439-3445.

DOI: 10.1002/app.33867

Google Scholar

[4] C. M. Yang, C. Y. Chen, Synthesis, characterisation and properties of polyanilines containing transition metal ions, Synth. Met. 153, (2005) 133.

DOI: 10.1016/j.synthmet.2005.07.136

Google Scholar

[5] M. M. Rahman Khan, Y. K. Wee, W. A. K. Mahmood, Effects of CuO on the morphology and conducting properties of PANI nanofibers, Synth. Met. 162, (2012) 1065-1072.

DOI: 10.1016/j.synthmet.2012.07.006

Google Scholar

[6] H. Xia, Q. Wang, Ultrasonic Irradiation: A novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites, Chem. Mater. 14, (2002) 2158-2165.

DOI: 10.1021/cm0109591

Google Scholar

[7] G. L. Teoh, K. Y. Liew, Wan A. K. Mahmood, Preparation of polyaniline-Al2O3 composites nanofibers with controllable conductivity, Mater. Lett. 61, (2007) 4947-4949.

DOI: 10.1016/j.matlet.2007.03.094

Google Scholar

[8] N. N. Mallikarjuna, S. K. Manohar, P. V. Kulkarni, A. Venkataraman, T. M. Aminabhavi, Novel high dielectric constant nanocomposites of polyaniline dispersed with γ-Fe2O3 nanoparticles, J. Appl. Polym. Sci, 97, (2005) 1868-1874.

DOI: 10.1002/app.21405

Google Scholar

[9] D. B. Mahesh, D. Raghunandan, S. Basavaraj, A. Venkataraman, Preparation and characterization of polyaniline-Co3O4 nanocomposites via interfacial polymerization, Am. J. Mater. Sci., 2, (2012) 39-43.

Google Scholar

[10] Y.T. Ravikiran, M.T. Lagare, M. Sairam, N. N. Mallikarjuna, B. Sreedhar, S. Manohar, A.G. MacDiarmid T.M. Aminabhavi, Synthesis, characterization and low frequency AC conduction of polyaniline/niobium pentoxide composites, Synth. Met., 156, (2006).

DOI: 10.1016/j.synthmet.2006.10.002

Google Scholar

[11] M. M. Rahman Khan, Y. K. Wee, and W. A. K. Mahmood, Synthesis of PANI-CaO composite nanofibers with controllable diameter and electrical conductivity, Polym. Compos. DOI 10. 1002/pc (2014).

DOI: 10.1002/pc.22950

Google Scholar

[12] N. A. Surplice, The electrical conductivity of calcium and strontium oxides, British J. Appl. Phys. 17, (1966) 175-180.

DOI: 10.1088/0508-3443/17/2/303

Google Scholar

[13] D. Tsotcheva, T. Tsanov, L. Terlemezyan, S. J. Vassilev, Structural investigations of polyaniline prepared in the presence of dodecylbenzenesulfonic acid, J. Therm. Anal. and Calor. 63, (2001) 133-141.

DOI: 10.1023/a:1010140504579

Google Scholar

[14] M. T. Cortes, E. V. Sierra, Effect of synthesis parameters in polyaniline: influence on yield and thermal behavior, Polym. Bullet. 56, (2006) 37-45.

Google Scholar

[15] R. Ansari, M. B. Keivani, Polyaniline conducting electroactive polymers: thermal and environmental stability studies, E-J. Chem. 3, (2006) 202-217.

DOI: 10.1155/2006/395391

Google Scholar

[16] S. Wang,  Z. Tan,  Y. Li,  L. Sun, T. Zhang, Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites, Thermichimica Acta. 441, (2006) 191-194.

DOI: 10.1016/j.tca.2005.05.020

Google Scholar

[17] A. H. Gemeay, R. G. El-Sharkawy, I. A. Mansour, A. B. Zaki, Preparation and characterization of polyaniline/manganese dioxide composites and their catalytic activity, J. Coll. Interf. Sci. 308, (2007) 385-394.

DOI: 10.1016/j.jcis.2006.12.077

Google Scholar