Synthesis and Sulfating of the ZrO2 for Obtaining of a Catalyst in Order to Future Use in Esterification for Biodiesel Production

Article Preview

Abstract:

This work aims to synthesize ZrO2 by the combustion reaction method and its sulfating for future use as a catalyst in esterification of the cottonseed oil. The synthesized sample was produced in batches of 15g, using as precursor the zirconium IV n-propoxide and urea as fuel. The sulfating occurred with an ion content of SO4-2 with 30% in relation to the mass of ZrO2. The samples were characterized by XRD, SEM and particle size distribution. The results revealed the formation of the monoclinic majority phase with traces of the orthorhombic phase referring to the synthesized sample, and a transformation of the orthorhombic phase to the tetragonal phase when sulfated. The morphology have shown the formation of homogeneous and spherical agglomerates, with a mean particle size of 24.34nm. The presence of traces of the tetragonal phase in the XRD of the SO42-/ZrO2 was a great indicator for future use in the esterification reaction to obtain biodiesel, because this type of phase after sulfating becomes very promising for the ester obtaining.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

102-106

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.N. Silva, J. Dantas, A.S. Silva, E.M.J.A. Pallone, A.C.F.M. Costa, Materials Science Forum Vols. 775-776 (2014), p.189.

Google Scholar

[2] J. Chevalier, L. Gremillard: Journal of the Americam Ceramic Society Vol. 92 (9) (2009), p. (1901).

Google Scholar

[3] F. Heshmatpour, R.B. Aghakhanpour: Powder Technology Vol. 205 (2011), p.193.

Google Scholar

[4] D. Fang, S. Liu, Z. Luo, C. Xiong, W. Xu: Applied Surface Science Vol. 258 (2012), p.6217.

Google Scholar

[5] J. Y. Thompson, B. R. Stoner, J.R. Piascik, R. Smith: Dental Materials Vol. 27 (2011), p.71.

Google Scholar

[6] Y.T. Liu, T.M. Lee, T.S. Lui: Biointerfaces Vol. 106 (2013), p.37.

Google Scholar

[7] J. Zhang, S. Chen, R. Yang, Y. Yan: Fuel Vol. 89 (10) (2010), p.2939.

Google Scholar

[8] V.G. Deshmane, Y.G. Adewuri: Microporous and Mesoporous Materials Vol. 148 (2012), p.88.

Google Scholar

[9] R. Añez, A. Sierraalta, G. Martorell, P. Sautet: Surface Science Vol. 603, (2009), p.2526.

DOI: 10.1016/j.susc.2009.05.030

Google Scholar

[10] I.J. Morales, M.A.R. Tejero, P.B. García, J.S. González: Fuel Processing Technology Vol. 97 (2012), p.65.

Google Scholar

[11] F.N. Silva, J. Dantas, R.B. J Cunha, E.M.J.A. Pallone, A.C.F.M. Costa: Electronic magazinel of Materials and Processes – REMAP Vol. 8 (1) (2013), p.51.

Google Scholar

[12] S. Yan, C. Dimaggio, S. Mohan, M. Kim, S.O. Salley, K.Y. Simon: Topics in Catalysis Vol. 53 (2010), p.721.

Google Scholar

[13] A.S. SILVA: Evaluation of NiO and MoO3 catalysts supported on MCM-41 in the production of biodiesel cottonseed oil. Doutorado. (Tese). Campina Grande, 2011. Universidade Federal de Campina Grande (UFCG). (PB).

DOI: 10.24873/j.rpemd.2021.10.846

Google Scholar

[14] J. Kansedo, K.T. Lee: Biomassande bioenergy Vol. 40 (2012), p.96.

Google Scholar

[15] S.S. Brum, V.C. Santos, P. Detro, M.C. Guerreiro: Química Nova Vol. 34 (9) (2011), p.1511.

Google Scholar

[16] L.K. Noda, N.S. Gonçalves, S.M. Borba, J.A. Silveira: Vibrational Spectosc. Vol. 44 (2007), p.101.

Google Scholar

[17] S. R. Jain, K.C. Adiga, P.A. Verneker: Combustion and Flame Vol. 40 (1981), p.71.

Google Scholar

[18] Y. Sun, S. Ma, Y. Du, L. Yuan, S. Wang, J. Yang, F. Deng, F.S. Xiao: Journal of Physical Chemistry B Vol. 109 (2005), p.2567.

Google Scholar

[19] M. Sekar, A. Halliyal: Journal of the American Ceramiciety Society Vol. 81 (2) (1998), p.380.

Google Scholar

[20] Y. Lião, X. Huang, X. Lião, B. Shi: Journalof Molecular Catalysis A: Chemical Vol. 347 (2011), p.46.

Google Scholar