Production of Mullite from Bentonite Clays and Alumina Residue

Article Preview

Abstract:

Among the ceramic raw materials, mullite is highlighted for presenting features which are of great interest for industry. However, the process through which this material is obtained requires pure reagents, raising the production costs. Therefore, this work is intended to obtain mullite from bentonite clays (source of silicon and aluminum oxides) and alumina residue, resulting from the Bayer process, thus becoming an interesting process from the economic and environmental standpoint. For this purpose, we made use of the thermal treatment in conventional furnace, temperature of 1500°C, heating rate of 5°C/min and dwell time of 60 min at maximum temperature. The synthesized samples were characterized by X-ray fluorescence (EDX), X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled to an EDS, besides the quantification of the phases present in the samples. The results revealed that mullite was the major phase produced, but corundum appeared as secondary phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-89

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Naghizadeh, F. Golestani-fard, H.R. Rezaie: Mater. Character. Vol. 62 (2011), p.540.

Google Scholar

[2] S. Akpinar, I.M. Kusoglu, O. Ertugrul, K. Onel: J. Eur. Ceram. Soc. Vol. 32 (2012), p.843.

Google Scholar

[3] T.M.B. Campos, L.S. Cividanes, D.D. Brumelli, K.K. Sakane, G.P. Thim: J. Eur. Ceram. Soc. Vol. 32 (2012), p.835.

Google Scholar

[4] M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat: J. Eur. Ceram. Soc. Vol. 32 (2012), p.4249.

Google Scholar

[5] M.S. Abdi, T. Ebadzadeh: Ceram. Inter. Vol. 39 (2013), p.1451.

Google Scholar

[6] H.M. Zhou, X.C. Qiao, J.G. Yu: Appl. Clay Sci. Vol. 80-81 (2013), p.176.

Google Scholar

[7] S. Sembiring, W. Simanjuntak, P. Manurung, D. Asmi, I.M. Low: Ceram. Inter. Vol. 40 (2014), p.7067.

Google Scholar

[8] L.N.L. Santana, J. Gomes, G.A. Neves, H.L. Lira, R.R. Menezes, A.M. Segadães: Appl. Clay Sci. Vol. 87 (2014), p.28.

Google Scholar

[9] S. Wang, X-Q. Shen, H-C. Yao, Z-J. Li: Ceram. Inter. Vol. 36 (2010), p.761.

Google Scholar

[10] P.M. Souto, M.A. Camerucci, A.G. Tomba Martinez, R.H.G.A. Kiminami: J. Eur. Ceram. Soci. Vol. 31 (2011), p.2819.

Google Scholar

[11] M.J. Ribeiro, D.U. Tulyagavov, J.M. Ferreira, J.A. Labrincha: J. Eur. Ceram. Soc. Vol. 25 (2005), p.703.

Google Scholar

[12] Y.M. Park, T.Y. Yang, S.Y. Yoon, R. Stevens, H.C. Park: Mater. Sci. Eng. A Vol. 454 (2007), p.518.

Google Scholar

[13] M.V.M. Magliano, V.C. Pandolfelli: Cerâmica 56 (2010), p.368.

Google Scholar

[14] J. Gomes, Obtenção de Mulita Nanométrica a Partir de Bentonitas Delaminadas. Doutorado. (Tese). Campina Grande, 2011. Universidade Federal de Campina Grande (UFCG). (PB).

DOI: 10.24873/j.rpemd.2021.10.846

Google Scholar

[15] I. Ganesh, J.M.F. Ferreira: Ceram. Inter. Vol. 35 (2009), p. (2007).

Google Scholar