High Energy Milling of Alumina Synthesized by Combustion Reaction Using a Vertical Shaft Attritor Mill: Influence of the Milling Time Length

Article Preview

Abstract:

Among the vast applications in which the α-alumina can apply, the literature has reported researches which aim to achieve better features of these materials varying the obtainment methodology and some post-obtainment techniques. Thus, this paper aims to evaluate how different milling time lengths of 15, 30, 45 and 60 minutes alter the structure and morphology of α-alumina powders synthesized by combustion reaction. The time and temperature of the combustion reaction were evaluated during the synthesis of the alumina. The samples of non-milled and milled alumina were characterized by XRD and particle size analysis. The results showed that the maximum achieved temperature of reaction was 598°C. The milling time length variation did not alter the stable α-Al2O3 majority crystal phase present in all samples. The average particle diameter was reduced from 23.3 to 10.5 μm comparing the non-milled and the sample milled for 60s.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-160

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.C. Habert; C.P. Borges; R. Nobrega: Processos de Separação com Membranas. (Série Escola Piloto de Engenharia Química, COPPE/UFRJ, Ed. E-papers. 2006).

DOI: 10.5151/9788521219460-05

Google Scholar

[2] H.N. Yoshimura; A.L. Molisani; G.R. Siqueira; A.C. Camargo; N.E. Narita; P.F. Cesar; H. Goldenstein: Efeito da Porosidade nas Propriedades Mecânicas de uma Alumina de Elevada Pureza. São Paulo. (2005).

DOI: 10.1590/s0366-69132005000300011

Google Scholar

[3] Y. Pang; X. Bao: J. Mater. Chem. Vol. 12 (2002), p.3699.

Google Scholar

[4] R.K. Pati; J.C. Ray; P. Pramanik: Mater. Lett. Vol. 44 (2000), p.299.

Google Scholar

[5] J.G. Li; X. Sun: Acta Mater. Vol. 48 (2000), p.3103.

Google Scholar

[6] P. Tartaj; J. Tartaj: Mater. Chem. Vol. 14 (2002), p.536.

Google Scholar

[7] J.C. Toniolo: Síntese de Pós de Alumina Nanocristalina por Combustão em Solução. UFRGS. Escola de Engenharia - PPGEM. Porto Alegre. (2004).

Google Scholar

[8] R.N. Das; A. Bandyopadhyay; S. Bose: J. Am. Ceram. Soc. Vol. 84 (2001), p.2421.

Google Scholar

[9] I. Levin; D. Brandon: J. Am. Ceram. Soc. Vol. 81 (1998), p. (1995).

Google Scholar

[10] O.V. Al'myasheva; E.N. Korytkova; A.V. Maslov; V.V. Gusarov: Inorg. Mater. Vol. 41 (2005), p.460.

Google Scholar

[11] H.Y. Zhu; X.P. Gao; D.Y. Song; S. P. Ringer; Y. X Xi; R.L. Frost: Micropor. Mesopor. Mat. Vol. 85 (2005), p.226.

Google Scholar

[12] T. Tseng; H. Chu; H. Hsu: Environ. Sci. Technol. Vol. 37 (2003), p.171.

Google Scholar

[13] M.C. Greca; M.A. Carvalho; C. Moraes; A. M. Segadães. Influência do Processamento sob o efeito de aditivos no comportamento de sinterização de aluminas13º Congresso Brasileiro de Engenharia e Ciências dos Materiais (CBECIMAT). Curitiba 06-09 Dezembro 1998. Procceding.. Curitiba 1998. (PR).

DOI: 10.26678/abcm.conem2018.con18-0171

Google Scholar

[14] D.A. Fumo; M.R. Morelli; A. M. Segadães: Mater. Res. Bull. 31 (1996) 1243-1255.

Google Scholar

[15] F.J. Wellenkamp: Moagens Fina e Ultrafina de Minerais Industriais: Uma Revisão. (Série Tecnologia Mineral Vol. 75, Rio de Janeiro CETEM/MCT 1999).

Google Scholar

[16] S.R. Jain; K.C. Adiga, K.C.; P. Verneker: Comb. Flame. Vol. 40 (1981), p.71.

Google Scholar

[17] H. KLUNG; L. Alexander. X-ray diffraction procedures, New York: Wiley, (1962).

Google Scholar

[18] V.V. Cordeiro; N.L. Freitas; K.M.S. Viana; G. Dias; A.C.F.M. Costa; H.L. Lira: Mater. Sci. Forum Vols. 660-661 (2010), p.58.

Google Scholar