Immobilized Enzyme Gox with Ferrite CoFe2O4 and Hybrid CoFe2O4/APTS

Article Preview

Abstract:

This work aims to evaluate the immobilization of glucose oxidase (GOx) with CoFe2O4 nanoparticles and hybrids CoFe2O4/APTS. The nanoparticles were synthesized by combustion reaction and silanized using 3-aminopropyltrimethoxysilane (APTS). The samples were characterized by XRD, FTIR, magnetic measurements and immobilization of GOx. The results indicated single phase of spinel CoFe2O4 and the addition of APTS did not alter the structure of the ferrite. The characteristic bands of spinel and characteristic bands were observed in the silane silanized sample proving the silanization of nanoparticles of CoFe2O4. The CoFe2O4 nanoparticles and the hybrid had saturation magnetization of 58.0 and 53.0 emu/g and coercivity of 1.14 kOe and 1.15, indicating that the silanization does not interfere with the magnetism of the particles. The immobilized GOx was obtained with values of 0.047 and 0.050 mg/g efficiency of 84.86 and 80.30% for CoFe2O4/APTS and CoFe2O4.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-166

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Prodelalova, B. Rittich, A. Spanova, K. Petrova, M. J. Benes: J. Chromatogr. Vol. 1056 (2004), p.43.

Google Scholar

[2] A. Saraswathy, S. N. Shaiju, N. Nirmal, A. Sabareeswaran, J. S. Sachin, S. J. Ramapurath: Carbohydr. Polym. Vol. 101 (2014), p.760.

Google Scholar

[3] J. Rivas, M. Bañobre-López, Y. Piñeiro-Redondo, B. Rivas, M.A. Lopez-Quintela: J. Magn. Magn. Mater. Vol. 324 (2012), p.3499.

DOI: 10.1016/j.jmmm.2012.02.075

Google Scholar

[4] A. Marcua, S. Popb, F. Dumitrachea, M. Mocanub, C. M. Niculiteb, M. Gherghiceanub: Appl. Surf. Sci. (2013).

Google Scholar

[5] H. Wang, J. Huang, C. Wang, D. Li, L. Ding, Y. Han: Appl. Surf. Sci. Vol. 257 (2011), p.5739.

Google Scholar

[6] N. Mahmed, O. Heczko, A. Lancok, S.P. Hannula: J. Magn. Magn. Mater. Vol. 353 (2014), p.15.

Google Scholar

[7] R. K. Sharma and Y. Monga: Appl. Catal. A Vol. 454 (2013), p.1.

Google Scholar

[8] Y. Li, Z. Jin, T. Li, Z. Xiu: Sci. Total Environ. Vol. 421-422 (2012), p.260.

Google Scholar

[9] Y. Cui, Y. Li, Y. Yang, X. Liu, L. Lei, L. Zhou, F. Pan: J. Biotechnol. Vol. 150 (2010), p.171.

Google Scholar

[10] A. Durdureanu-Angheluta, L. Pricop, I. Stoica, C. Peptu, A. Dascalu, N. Marangoci, F. Doroftei, H. Chiriac, M. Pinteala, B. C. Simionescu: J. Magn. Magn. Mater. Vol. 322 (2010), p.2956.

DOI: 10.1016/j.jmmm.2010.05.013

Google Scholar

[11] V.J. Yang, J. Lee, J. Kang, K. Lee, J.S. Suh, H.G. Yoon, Y.M. Huh, S. Haam: Langmuir Vol. 24 (2008), p.3417.

DOI: 10.1021/la701688t

Google Scholar

[12] Y. Hou, X. Han, J. Chen, Z. Li, X. Chen, L. Gai. Technol. 116 (2013) 101-106.

Google Scholar

[13] L. Yang, X. Ren, F. Tang, L. Zhang: Biosens. Bioelectron. Vol. 25 (2009), p.889.

Google Scholar

[14] W. Zhilei, L. Zaijun, S. Xiulan, F. Yinjun, L. Junkan: Biosens. Bioelectron. Vol. 25 (2010), p.1434.

Google Scholar

[15] K.F. Fernandes, C.S. Lima, F.M. Lopes: Rev. Proc. Quím. Vol. 53-58 (2010).

Google Scholar

[16] P.T.A. Santos, J. Dantas, P.M.A.G. Araújo, P.T.A. Santos, A.C.F.M. Costa: Mater. Sci. Forum Vols. 775-776 (2014), p.399.

Google Scholar

[17] P.T.A. Santos, P.T.A. Santos, P.M.A.G. Araújo, A.C.F.M. Costa: Mater. Sci. Forum, (2012).

Google Scholar

[18] L.V. Azároff: Prog. Solid State Chem. Vol. 1 (1964), p.347.

Google Scholar

[19] J.P. Sinnecker: Rev. Brasil Ens. Fís. Vol. 22 (2000), p.396.

Google Scholar

[20] L. Zhou, Y. Jiang, J. Gao, X. Zhao, L. Ma, Q. Zhou: J. Biochem. Eng. Vol. 69 (2012), p.28.

Google Scholar