Dielectric Characterization at High Temperature of Iron Doped Potassium Strontium Niobate Ceramic by Impedance Spectroscopy

Article Preview

Abstract:

Tetragonal Tungsten Bronze structure TTB-type structure has attracted interest by the high anisotropy of the crystal structure. The dielectric characterization of iron-doped niobate of TTB-type structure, with stoichiometry KSr2(Fe0.25Nb4.75)O15-δ, prepared by Modified Polyol Method was investigated. Nanocrystalline single phase powders were obtained after calcination of the precursor powder at 1150 °C for 10 hours in an oxygen atmosphere. The dielectric characterization was performed by impedance spectroscopy, from room temperature to 600 °C, in the frequency range of 5 Hz to 13 MHz. The permittivity values obtained for KSr2(Fe0.25Nb4.75)O15-δ showed superior to the permittivity values of the KSr2Nb5O15 host structure in all temperature range investigated. At room temperature, the permittivity values (2100) of KSr2(Fe0.25Nb4.75)O15-δ is two times the permittivity values of KSr2Nb5O15. The substitution of niobium cation by iron cation in the KSr2Nb5O15 host structure showed a suppression of the ferroelectric (P4bm) paraelectric (P4/mbm) phase transition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-192

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Iijima, S. Ito, H. Matsuda, R. Dugnani, F.K. Chang: Mater. Trans. Vol. 45 (2004), p.233.

Google Scholar

[2] Y.D. Hou, M.K. Zhu, C.S. Tian, H. Yan: Sensors and Actuators A. Vol. 116 (2004), p.455.

Google Scholar

[3] D. Kolar, S. Gaberscek, Z. Stadler, D. Suvorov: Ferroelectrics. Vol. 27 (1980), p.269.

Google Scholar

[4] A. Simon, J. Ravez: C.R. Chimie: Vol. 9 (2006), p.1268.

Google Scholar

[5] S. Lanfredi, D.H.M. Gênova, I.A.O. Brito, A.R.F. Lima, M.A.L. Nobre: J. Solid State Chem. Vol. 184 (2011), p.990.

Google Scholar

[6] N. Wakiya, J.K. Wang, A. Saiki, K. Shinozaki, N. Mizutani: J. Eur. Ceram. Soc. Vol. 19 (1999), p.1071.

Google Scholar

[7] J. Ravez: C. R. Acad. Sci. Paris. série II c (1999), p.415.

Google Scholar

[8] S. Lanfredi, I.A.O. Brito, C. Polini, M.A.L. Nobre: J. Appl. Spectros. Vol. 79 (2012), p.254.

Google Scholar

[9] M. P. Pechini: U.S. Patent, No. 3. 330. 697 (1967).

Google Scholar

[10] S. Lanfredi, C.X. Cardoso, M.A.L. Nobre: Mater. Sci. Eng. B Vol. 112 (2004), p.139.

Google Scholar

[11] M.A.L. Nobre, S. Lanfredi: Catal. Today Vol. 78 (2003), p.529.

Google Scholar

[12] M.A.L. Nobre, S. Lanfredi: J. Phys. Chem. Solids Vol. 62 (2001), p. (1999).

Google Scholar

[13] H. El. A. Belghiti, A. Simon, P. Gravereau, A. Villesuzanne, M. Elaatmani, J. Ravez: Sol. State Sci. Vol. 4 (2002), p.933.

DOI: 10.1016/s1293-2558(02)01343-2

Google Scholar

[14] M.A.L. Nobre, S. Lanfredi: J. Phys. Chem. Solids. Vol. 64 (2003), p.2457.

Google Scholar

[15] M.A.L. Nobre, S. Lanfredi: Mater. Lett. Vol. 47 (2001), p.362.

Google Scholar

[16] S. Lanfredi, G. Palacio, F.S. Bellucci, C.V. Colin, M.A.L. Nobre: J. Phys. D: Appl. Phys. Vol. 45 (2012), p.435302.

Google Scholar

[17] S. Lanfredi, C. Darie, F.S. Bellucci, C.V. Colin, M.A.L. Nobre: Dalton Trans. Vol. 43 (2014), p.10983.

DOI: 10.1039/c4dt00623b

Google Scholar

[18] A.R.F. Lima, S. Lanfredi, M.A.L. Nobre: Quim. Nova Vol. 33 (2010), p.1071.

Google Scholar

[19] Q. Ke, X. Lou, Y. Wang, J. Wang: Phys. Rev. B Vol. 82 (2010), p.024102.

Google Scholar