Hybrid Films Photoluminescence of Chitosan/ZnAl2O4

Article Preview

Abstract:

This work reports the photoluminescence chitosan/ZnAl2O4 films in mass ratios 1:1, 1:2, 1:3, 1:4 and 1:5, respectively. The films were presented flexible, opaque, with a thickness of 0.04 mm and were characterized by XRD, FTIR, emission and excitation. The results show the presence of characteristic peaks of chitosan and ZnAl2O4, and bands related to the presence of chitosan, silanol and siloxane groups and silane agent used in surface modification ZnAl2O4, which acts as a binding agent with the chitosan all movie reviews. The excitation and emission spectra showed the presence of broadband processes associated with charge transfer from Al +3 the O-2 in all the films, and that the highest photoluminescence intensities were observed for the films 1:1 and 1:2, which showed higher concentrations than the concentrations Qs 1:3, 1:4 and 1:5. Thus, Qs acted as a binder, transferring energy to Al +3 the O- 2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-210

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X.Y. Chen, C. Ma, Z. J, Zhang. B.N. Wang: Materials Science and Engineering B Vol. 151 (2008), p.224.

Google Scholar

[2] I.B. Huang, Y.S. Chang, H.L. Chen, C.C. Hwang, C.J. Jian, Y.S. Chen, M.T. Tsai: Thin Solid Films, Preparation and luminescence of green-emitting ZnAl2O4: Mn 2+ phosphor thin films. Available online, (2014).

DOI: 10.1016/j.tsf.2014.02.104

Google Scholar

[3] J. Okal, M. Zawadzki: Applied Catalysis Environmental B Vol. 105 (2011), p.182.

Google Scholar

[4] M.G. Hipólito, J.G. Mendoza, E. Martínez, O.A. Fregoso, C. Falcony: Solid State Physics Vol. 201 (2004), p.1510.

Google Scholar

[5] M. Kumar, T.K. Seshagiri, M. Mohapatra, V. Natarajan, S.V. Godbole: Journal of Luminescence Vol. 132 (2012), p.2810.

Google Scholar

[6] X. Li, Z. Zhu, Q, Zhao, L. Wang: Journal of Hazardous Materials Vol. 186 (2011), p. (2089).

Google Scholar

[7] C. Ma, X.Y. Chen, S.P. Bao; Microporous and Mesoporous Materials Vol. 129 (2010), p.37.

Google Scholar

[8] J. Song, M. Leng, X. Fu, J. Liu: Journal of Alloys and Compounds: 543 Vol. (2012), p.142.

Google Scholar

[9] D. Silva, A. Abreu, M.R. Davolos, M. Rosaly: Optical Materials Vol. 33 (2011), 1226.

Google Scholar

[10] M. Kumar, T.K. Seshagiri, M. Mohapatra, V. Natarajan, S. V. Godbole: Journal of Luminescence Vol. 132 (2012), p.2810.

Google Scholar

[11] B.S. Vasile, O. Oprea, G. Voicu, A. Ficai, E. Andronescu, A. Teodorescu, A. Holban: International Journal of Pharmaceutics Vol. 463 (2014), p.161.

DOI: 10.1016/j.ijpharm.2013.11.035

Google Scholar

[12] K. Wang, X. Yuan, Z. Guo, J. Xu, Y. Chen: Carbohydrate Polymers Vol. 102 (2014), p.699.

Google Scholar

[13] D. Zhang, Y. Yin, Y. Liu, W. Chao, Y. Zhai: Journal of Physics and Chemistry of Solids Vol. 74 (2013), p.1131.

Google Scholar

[14] S. Kango, S. Kalia, A. Celli, J; Njuguna, Y. Habibi, R. Kumar: Progress in Polymer Science Vol. 38 (2013), p.1232.

DOI: 10.1016/j.progpolymsci.2013.02.003

Google Scholar

[15] D.H. Park, S.J. Hwang, J.M. Oh, J.H. Yang, J.H. Choy, Progress in Polymer Science Vol. 38 (2013), p.1442.

Google Scholar

[16] J. Feng, B.D. Hammock, I.M. Kennedy, S. Goumin, A. Maquieira: United States Patent Application Publication, US 2003/0180780 Al, (2003).

Google Scholar

[17] E. Leal, B.B. Dantas, L.S. Neiva, R.H.G.A. Kiminami, A.C.F.M. Costa: Materials Science Forum Vols. 727-728 (2012), p.1260.

Google Scholar

[18] R. Ianos, R. Lazau, I. Lazau, C. Pacurariu: Journal of the European Ceramic Society Vol. 32 (2012), p.1605.

Google Scholar

[19] F. Davar, M. Salavati-Niasari: Journal of Alloys and Compounds Vol. 509 (2011), p.2487.

Google Scholar