Evaluation of Technological Properties of Ceramic Bodies Made of Kaolinite Clay and Steatite

Article Preview

Abstract:

Ceramic bodies composed of steatite residues from workshops from the region of Ouro Preto (MG-Brazil) and 15, 20 and 25% of kaolinite clay were fired at 1000 and 1200 °C for 2hrs in air to evaluate their technological properties. Essays of flexural strength and water absorption showed that ceramic bodies have a performance for their use as commercial bricks with values in accordance to those defined by the Brazilian standards. The mixture material, raw and fired, was analyzed using X-ray diffraction, ICP/OES and SEM. After fired, the samples showed a more compact surface and an advanced sintering process. Talc and kaolinite are the dominant minerals in raw ceramics. After being fired, talc changes to enstatite and at 1200°C, mullite, periclase and cordierite appear. These minerals affect the physical properties of the ceramic bodies such as reduction of the porosity, increase of the sintering process and consequently, increased flexural strength. The results show that mixtures kaolinite clay and steatite have potential for application in ceramic industry which can also contribute to reducing the environmental impact of industrial waste from steatite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

564-569

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. H. Murray: Dev. Clay Sci. Vol. 2 (2007), p.180.

Google Scholar

[2] A.F.D.C. Varajão, B. Boulangé, A.J. Melfi: Rev. Bras. de Geociências Vol. 20 (1990), p.75.

Google Scholar

[3] A.F.D.C. Varajão, R.J. Gilkes, R.D. Hart: Clay. and Cl. Min. Vol. 49 (2001), p.44.

Google Scholar

[4] M.C. Santos: Caracterização dos depósitos argilosos da porção centro-sul do Sinclinal Moeda, Quadrilátero Ferrífero, MG: macromorfologia, micromorfologia, cristaloquímica, gênese e considerações industriais. Mestrado (Dissertação). Ouro Preto, 2003. Universidade Federal de Ouro Preto (UFOP). (MG).

DOI: 10.17143/ciaed/xxiilciaed.2017.00316

Google Scholar

[5] M.C. Santos, A.F.D.C. Varajão, J. Yvon: Catena Vol. 55 (2004), p.277.

Google Scholar

[6] A.M.M. Carrera, M.G. Peralta-Sánchez, A.F.D.C. Varajão, M.M. Ferreira: Téc. Aplic. a la caracterización y aprovechamiento de recursos geológico-mineros: Descripciones Metodológicas. Inst. Geo. y Min. de España, Oviedo Vol. 1 (2010), p.160.

Google Scholar

[7] M.G. Peralta-Sánchez, A.M. Morales-Carrera, A.F.D.C. Varajão, M.M. Ferreira: Cer. Vol. 57 (2011), p.254.

Google Scholar

[8] M.M. Ferreira, A.F.D.C. Varajão, A.M. M. Carrera, M.G.P. Sánchez, G.M. Costa: Cer. Vol. 58 (2012), p.105.

Google Scholar

[9] A.F.D.C. Varajão, M.C. Santos, A.M.M. Carrera, M.G.P. Sánchez, C.C.G. Silva: 57º Congresso Brasileiro de Cerâmica (CBC). 5° Congresso Iberoamericano de Cerâmica. Natal 19 - 22 de Maio, 2013. Proceeding.. Natal, 2013. (RN).

Google Scholar

[10] ISO – International Organization for Standardization. ISO13006. Ceramic tiles: Definitions, classification, characteristics and marking. Geneve. (1998) 56p.

Google Scholar

[11] H.S.S. Torres: Caracterização do refugo do esteatito das indústrias e oficinas artesanais da região de Congonhas, Conselheiro Lafaiete, Mariana e Ouro Preto. Dissertação Mestrado (Dissertação). Ouro Preto, 2007. Rede Temática em Engenharia de Materiais (REDEMAT/ UFOP). (MG).

DOI: 10.25145/j.pasos.2023.21.039

Google Scholar

[12] Associassão Brasileira de Normas Técnicas. Tijolo maciço cerâmico para alvenaria. Rio de Janeiro: ABNT 1983. (NBR 7170).

Google Scholar

[13] H.S.S. Torres, A F D.C. Varajao, A.C.S. Sabioni:. Technological characterization of ceramic produced from soapstone residues and kaolin. Applied Clay Science (2014).

DOI: 10.1016/j.clay.2015.04.016

Google Scholar

[14] Associação Brasileira de Normas Técnicas. Componentes cerâmicos P. 3: Blocos cerâmicos para alvenaria estrutural e de vedação – Métodos de ensaio. Rio de Janeiro: ABNT 2005. (NBR 15270-3).

DOI: 10.22410/issn.2176-3070.v10i4a2018.2009

Google Scholar

[15] L.A. Gaspar Júnior: Adição experimental de novos materiais às argilas da região do polo cerâmico de Santa Gertrudes (SP). Tese (Doutorado em Geociências). Departamento de Petrologia e Metalogenia. Universidade Estadual Paulista. (2003).

DOI: 10.22456/1807-9806.35816

Google Scholar

[16] Associação Brasileira de Normas Técnicas. Placas cerâmicas para revestimentos – Especificação e métodos de ensaio. Rio de Janeiro: ABNT 1997. (NBR 13818).

Google Scholar

[17] ASTM International. C1161-90. Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature. (1990) 19pp.

Google Scholar

[18] M. Wesolowski: Therm. Acta. Vol. 78 (1984), p.395.

Google Scholar

[19] B. Reynard, J.D. Bass, J.M. Jackson: Journal of the European Ceramic. Soc. Vol. 28 (2008), p.2459.

Google Scholar

[20] B.M. Kim, Y.K. Cho, R. Stevens, H.C. Park: Ceram. Int. Vol. 35 (2009), p.597.

Google Scholar

[21] J.J. Meléndez-Martínez, M. Jiménez-Melendo, A. Domínguez-Rodriguez, G. Wötting, Journal of the Europe Ceram. Soc. Vol. 21 (2001), p.63.

Google Scholar

[22] Z. Acimovic, L. Pavlovic, L. Andric, M. Stamotovic: Mat. Let. Vol. 57 (2003), p.26516.

Google Scholar