Preparation of Membrane Zeolite MCM-22 and Evaluation Process Oil/Water Separation

Article Preview

Abstract:

The objective of this work was prepared by secondary growth method, and evaluate the ability of the MCM-22 zeolite membrane separation system in oil / water in a continuous flow system. The zeolite membrane MCM-22 was characterized by different techniques: X-Ray Spectrometry Energy Dispersive (EDX), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). A continuous flow was used. The test for measuring mass flow of water / oil emulsion was conducted in peristaltic pump, wherein the membrane zeolite MCM-22 was tested. Through the results, we can observe the efficiency of the method used in the preparation of zeolite membrane and was also observed that the zeolite MCM-22 membrane, obtained by secondary growth method showed removal percentages equivalent to the standards required by Resolution 392 CONAMA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

605-608

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Gryta, K. Karakulski and A. W. Morawski: Water Research Vol. 35 (2001), p.3665.

Google Scholar

[2] M. Abbasi, A. Salahi, M. Mirfendereski, T. Mohammadi, A. Pak: Desalination Vol. 252 (2010), p.113.

Google Scholar

[3] J. Cui, X. Zhang, H. Liu, S. Liu, K. L. Yeung: Journal of Membrane Science Vol. 325 (2008), p.420.

Google Scholar

[4] X.E. Hu, E. Bekassy-Molnar, A. Koris: Desalination Vol. 163 (2004), p.355.

Google Scholar

[5] V. Tuan, S. Tsuyo, H. Takaya, Y. Koichi, S. Masahiko, D. Ryosuke, T. Huy, W. JIE: Chemical Engineering Science Vol. 94 (2013), p.1.

Google Scholar

[6] T.J. Bandosz: Activated Carbon Surface in Environmental Remediation. (Academic Press, Oxford, 2006).

Google Scholar

[7] K.C. Saqueto, A.M.R. Machado, N.N.B. Salvador: Revista Brasileira de Ciências Ambientais Vol. 5 (2006), p.27.

Google Scholar

[8] J. Caro, M. Noack, P. Kölsch, R. Schäfer: Micropor. Mesopor. Mater. Vol. 38 (2000), p.3.

Google Scholar

[9] J. Dong, Y.S. Lin, M. Kanezashi, Z. Tang: J. Appl. Phys. 104 Vol. (2008), p.12.

Google Scholar

[10] K. Makita, Y. Hirota, Y. Egashira, K. Yoshida, Y. Sasaki, N. Nishiyama: Journal of Membrane Science, 2011, 372, 269–276.

DOI: 10.1016/j.memsci.2011.02.007

Google Scholar

[11] A.S. Barbosa, A.S. Barbosa, M. G F. Rodrigues. In: 7th International Conference on Intelligent Processing and Manufacturing of Materials, 2012, Foz do Iguaçu.

Google Scholar

[12] S.C.G. Rodrigues, M.G.F. Rodrigues, K R.O. Pereira, F.R. Valenzuela-Díaz: Brazilian Journal of Petroleum and Gas Vol. 4 (2010), p.049.

Google Scholar

[13] R.C.N. Leite: síntese hidrotérmica de zeólitas do tipo MCM-22 com rotas de síntese com mínimo de direcionadores orgânicos e preparação de catalisadores contendo níquel, platina e rutênio. Doutorado. (Tese). Campina Grande, 2011. Universidade Federal de Campina Grande (UFCG). (PB).

DOI: 10.14393/19834071.2013.24194

Google Scholar

[14] J. Yang, J.Y. Yang, Y. Zhou, F. Wei, W.G. Lin, J.H. Zhu: Journal of Hazardous Materials Vol. 179 (2010), p.1031.

Google Scholar

[15] Y. Cheng, M. Lu, J. Li, X. Su, S. Pan, C. Jiao, M. Feng: Journal of Colloid and Interface Science Vol. 369 (2012), p.388.

Google Scholar

[16] CONAMA Resolução n° 392, de 08 de agosto de 2007 que dispõe sobre o descarte contínuo de água de processo ou de produção em plataformas marítimas de petróleo e gás natural, e dá outras providências. Publicada no DOU de 9 de agosto de (2007).

DOI: 10.11606/t.3.2013.tde-01082013-162018

Google Scholar