Interface Phenomena of Co-Sintered Steel-Zirconia Laminates

Article Preview

Abstract:

The composite formation of steel and ceramics is especially for medical applications of great interest. By use of the multicomponent tape casting metal-ceramic composite components like bipolar scissors and other surgical instruments can be produced. A coating technology that comes from the paper industry, allows to apply a very thin insulating layer of a few microns between the electrodes consisting of stainless steel. Until now bipolar surgical instruments are produced by mechanical joining of steel and ceramic parts or by spraying a ceramic layer on the steel instruments. This joining steps can lead to stresses in the sensitive ceramic material and leave fine interstices or pores that are not only avoidable with a force and / or tight fit. Both factors are reasons for premature failure of the instrument, even if the materials are not yet at the limits of their resistance. Through the joint shaping by the tape casting and subsequent co-sintering of both materials, a material bond is achieved in addition to the previously existing mechanisms of force and form fit. This optimizes the composite properties and increases the usage time of metal-ceramic layered composites. Special focus is given to the formation of the interface and the associated changes in properties of the individual components of the laminate. These investigantions illustrate the influence of co-manufacturing on the texture of the laminate materials and the formed interface between them. By x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), x-ray fluorescence analysis (RFA) and thermodynamic calculations (FactSage) of the material bond at the metal-ceramic interface is investigated. In various application areas where steel and zirconia should occur as integral partners, this material combination may be established.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

289-296

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] http: /www. micromed. com/de-DE/produkte_medizintechnik/bipolar/bipolare-schere/ (16. 01. 2015).

Google Scholar

[2] A. Baumann, Pulverspritzgießen von Metall-Keramik-Verbunden, Dissertation, 9th edition, Fraunhofer Verlag, (2010).

Google Scholar

[3] T. Slawik, T. Handke, R. Scholl, U. Scheithauer, R. Zelm, T. Moritz, H. Großmann, A. Michaelis, A. Baumann, Spiralwickeltechnik für mehrlagige keramische Hülsen, Wochenblatt für Papierfabrikation, 140, 5, 330-333 (2012).

Google Scholar

[4] U. Scheithauer, T. Slawik, R. Scholl, T. Handke, A. Baumann, H. Großmann, A. Michaelis, Spiralwickeln keramischer und pulvermetallurgischer Grünfolien, Keramische Zeitschrift, 64, 1 (2013) 35-39.

Google Scholar

[5] O. Kyrylov, Abscheidung und Charakterisierung von PECVD-Aluminiumoxidschichten, Dissertation, RWTH Aachen (2003).

Google Scholar

[6] T. Slawik et al, Metal-Ceramic Layered Materials and Composites Manufactured by Powder Techniques, Advanced Engineering Materials, 16, 10 (2014) 1293-1302.

DOI: 10.1002/adem.201400221

Google Scholar

[7] S. Heilmann, Charakterisierung von co-gesinterten Metall-Keramik Verbundfolien, Diploma Thesis, TU Dresden, Fraunhofer IKTS (2014).

Google Scholar

[8] U. Scheithauer et al, Studies on thermoplastic 3D printing of steel-zirconia composites, Journal of Materials Research, 29, 17 (2014) 1931-(1940).

DOI: 10.1557/jmr.2014.209

Google Scholar

[9] A. Bergner, T. Moritz, A. Michaelis, Steel-ceramic laminates made by tape casting – Processing and Interfaces, Ceramic Transactions, The American Ceramic Society, Wiley, 249 (2014) 55-62.

DOI: 10.1002/9781118995433.ch6

Google Scholar

[10] M. Neubert, Optimierung der Werkstoffeigenschaften von Metall-Keramik-Verbunden durch Modifikation der Wärmebehandlung, Diploma Thesis, TU Freiberg (2013).

Google Scholar

[11] H. -J. Bargel, G. Schulze, Werkstoffkunde, 10th edition, Springer Verlag, 599-605 (2008).

Google Scholar

[12] M. Dourandish, A. Simchi, K. Hokomato, S. Tanaka, Phase formation during sintering of nanocrystalline zirconia/stainless steel functionally graded composite layers, Material Letters, 65, 3 (2011) 523-526.

DOI: 10.1016/j.matlet.2010.10.077

Google Scholar

[13] J. -G. Yeo, Zirconia-Stainless Steel Functionally Graded Material by Tape Casting, Journal of the European Ceramic Society, 18 (1998) 1281-1285.

DOI: 10.1016/s0955-2219(98)00054-5

Google Scholar

[14] A. Baumann, Metall-Keramik-Verbunde durch Pulverspritzgießen, Verbundwerkstoffe und Werkstoffverbunde, 18. Symposium, DGM, Chemnitz, 41 (2011) 441-448.

DOI: 10.1002/9783527627110.ch71

Google Scholar

[15] http: /tosoh. com/our-products/advanced-materials/zirconia-powders (16. 01. 2015).

Google Scholar

[16] M. Campos, J. A. Sicre-Artalejo, J. M. Torralba, H. Zbiral, H. Danninger, P. Pena, Degradation of alumina refractory bricks by sintering Mn low-alloy steels, Ceramics International, 40, 2 (2014) 3063-3070.

DOI: 10.1016/j.ceramint.2013.09.140

Google Scholar

[17] Bozena Arnold, Werkstofftechnik für Wirtschaftsingenieure, Springer Verlag, Heidelberg, ISBN 978-3-642-36591-1 (2013) 113.

Google Scholar

[18] T. Slawik et al, Metallgetragene Brennstoffzelle durch papiertechnologische Fertigung, Jahresforschungsbericht 2013/2014, Fraunhofer IKTS (2014).

Google Scholar