Smart Material Composites Substitute Monolithic Structures

Article Preview

Abstract:

The present paper approaches possible advantages of hybrid constructions compared to monolithic design. Hybrid constructions represent multi-material composites where each of the materials employed are optimally utilized. Therefore, materials consumption decreases which leads to material, energy and cost efficiency and finally contributes to sustainability.The investigations targets on a possible substitution of a heavy iron casted pump housing by a metal-polymer hybrid light weight construction and on the achievable total mass reduction. Multi-material composites are prerequisite for lightweight design and promise a huge mass reduction potential.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

353-360

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Hage, R. Schulz, Verbindungstechnik im Multi-Material-Design künftiger Leichtbau-Karosserien, 2 (2009) 2, 42-45.

DOI: 10.1007/bf03223568

Google Scholar

[2] Ahmad Mayyas, Ala Qattawi, Mohammed Omar, Dongri Shan, Design for sustainability in automotive industry: A comprehensive review, Renew Sust Energ Rev 16 (2012) 4, 1845-1862.

DOI: 10.1016/j.rser.2012.01.012

Google Scholar

[3] C. Koffler, K. Rohde-Brandenburger, On the calculation of fuel savings through lightweight design in automotive life cycle assessments, Int J Life Cycle Assess 15 (2010) 1, 128-135.

DOI: 10.1007/s11367-009-0127-z

Google Scholar

[4] M. Goede, M. Stehlin, L. Rafflenbeul, G. Kopp, E. Beeh, Super Light Car—lightweight construction thanks to a multi-material design and function integration, Eur. Transp. Res. Rev. 1 (2009) 1, 5-10.

DOI: 10.1007/s12544-008-0001-2

Google Scholar

[5] D. Muhs, H. Wittel, D. Jannasch, J. Voßiek, Rohloff/Matek Maschinenelemente, 18st ed., Vieweg Verlag, Wiesbaden, (2007).

DOI: 10.1007/978-3-8348-9406-9

Google Scholar

[6] K. Gieck, R. Gieck, Technische Formelsammlung, 31st ed., Gieck Verlag, Germering, (2005).

DOI: 10.3139/9783446461161.fm

Google Scholar

[7] H. Wargnier, F.X. Kromm, M. Danis, Y. Brechet, Proposal for a multi-material design procedure, Mater Des 56 (2014) 44-49.

DOI: 10.1016/j.matdes.2013.11.004

Google Scholar

[8] M. F. Ashby, Y.J.M. Bréchet, Designing hybrid materials, Acta Mater. 51 (2003) 19, 5801-5821.

DOI: 10.1016/s1359-6454(03)00441-5

Google Scholar

[9] H. Batzer, Polymere Werkstoffe, Bd. I Chemie und Physik, Georg Thieme Verlag Stuttgart, New York, 1985; pp.471-477.

DOI: 10.1002/nadc.19850330112

Google Scholar

[10] M. Bruggi, P. Duysinx, Topology optimization for minimum weight with compliance and stress constraints, Struct. Multidisc. Optim. 46 (2012) 369-384.

DOI: 10.1007/s00158-012-0759-7

Google Scholar

[11] A. Frick, M. Borm, Multi-materials Composites Provide Lightweight Engineering, IJAST 7 (2014) 2, 1-9.

Google Scholar

[12] J. Zhang, K. Chaisombat, S. He, C. H. Wang, Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures, Mater Design, 36 (2012) 75-80.

DOI: 10.1016/j.matdes.2011.11.006

Google Scholar

[13] W. J. Joost, Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering, JOM 64 (2012) 9, 1032-1038.

DOI: 10.1007/s11837-012-0424-z

Google Scholar