Mechanical Requirements of Tailored Joining Technologies for Spring Elements in Multi-Material-Design

Article Preview

Abstract:

The conflict of targets between mass reduction, strength and costs of a multi-material-design module is addressed by the example of a multi-material hybrid leaf spring. A rather simple model is defined such that one portion of the spring is made by glass fiber reinforced plastic (GFRP) and the other portion by a high strength spring steel.In a rather basic approach the leaf spring is exposed to uniaxial bending. The mass of this module is discussed as a function of the strength of the joint. Subsequently, the leaf spring is exposed to a multi-axial bending, e.g. as an effect of side loads. Hence, the relative strength of the anisotropic portion (GFRP) of the leaf spring is diminished whereas the strength of the isotropic portion (high strength spring steel) is only slightly affected. The mass of the module is discussed in the same way. It is shown up by this analysis that the conflict of targets can be solved in different ways by considering the specific strength of the joint.It is the target of this basic study to derive the mechanical requirement of strength of this tailored joint which has to be met by its design in order to solve the addressed conflict of targets in a preferable optimal way.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

385-392

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Beck, Verbindungstechnik strukturell tragender CFK-Al-Mischverbindungen im Auto-mobilbau, Cuvillier Verlag, Göttingen, (2013).

Google Scholar

[2] S. Brüdgam, G. Meschut, J. Küting, Fügesystemoptimierung zur Herstellung von Mischbauweisen aus Kombinationen der Werkstoffe, Stahl, Aluminium, Magnesium und Kunststoff, BMBF Abschlussbricht, Paderborn, (2003).

Google Scholar

[3] J. Park, K. Jeong. J. Choi, J. Kweon, A Study on Failure Strength Evaluation of Hybrid Composite Joint, in Proceedings of the 18th International Conference on Composite Materials (2011).

Google Scholar

[4] G. Wagner, F. Balle, D. Eifler, Ultrasonic Welding of Aluminum Alloys to Fiber Reinforced Polymers, in Adv. Eng. Mater. 9 (2013) 792-803.

DOI: 10.1002/adem.201300043

Google Scholar

[5] P. Mitschang, R. Velthuis, M. Didi, Induction Spot Welding of Metal/CFRPC Hybrid Joints, in Adv. Eng. Mater. 9 (2013) 804-813.

DOI: 10.1002/adem.201200273

Google Scholar

[6] R. Balle, S. Huxhold, S. Emrich, G. Wagner, M. Kopnarski, D. Eifler, Influence of Heat Treatments on the Mechanical Properties of Ultrasonic Welded AA 2024/CF-PA66-Joints, in Adv. Eng. Mater. 9 (2013) 837-845.

DOI: 10.1002/adem.201200301

Google Scholar

[7] U. Reisgen, A. Schiebahn, J. Schönberger, Innovative Fügeverfahren für hybride Verbunde aus Metall und Kunststoff, in lightweight design 3 (2014) 12-17.

DOI: 10.1365/s35725-014-0370-5

Google Scholar

[8] D. P. Graham, A. Rezai, D. Baker, P. A. Smith, J. F. Watts, A Hybrid Joining Scheme for High Strength Multi-Material Joints, in Proceedings of the 18th International Conference on Composite Materials (2011).

Google Scholar

[9] Information on http: /www. spp-1712-hybrider-leichtbau. de.

Google Scholar

[10] B. Heißing, M. Ersoy, S. Gies, Fahrwerkhandbuch, fourth ed., Springer Fachmedien, Wiesbaden, (2013).

Google Scholar

[11] A. Büscher, C. Schäfers, N. Austerhoff, Gefügtes Fahrwerk – Klebstoffe übernehmen dämpfende Aufgaben, in W. Siebenpfeiffer, Leichtbau-Technologien im Automobilbau, ATZ/MTZ-Fachbuch, Springer Fachmedien, Wiesbaden, 2014, pp.38-43.

DOI: 10.1007/978-3-658-04025-3_7

Google Scholar

[12] AVK-Industrievereinigung Verstärkte Kunststoffe e.V., Handbuch Faserverbund-kunststoffe/Composites, fourth ed., Springer Vieweg, Wiesbaden, (2014).

DOI: 10.1007/978-3-658-02755-1

Google Scholar

[13] J. Minnert, G. Wagenknecht, Verbundbau-Praxis, Bauwerk Verlag, Berlin, (2008).

Google Scholar

[14] Forschungskuratorium Maschinenbau, FKM-Richtlinie – Rechnerischer Festigkeitsnachweis für Maschinenbauteile, sixth ed., VDMA Verlag, Frankfurt a.M., (2012).

Google Scholar