Increasing the Structural Integrity of Hybrid Plastics-Metal Parts by an Innovative Mechanical Interlocking Effect

Article Preview

Abstract:

In order to exploit full potential of hybrid materials, it is necessary to develop optimized load-dependent component designs, new manufacturing processes and joining technologies. Structural integrity concerning the interfaces between the single materials of the hybrid component poses a key factor to success. In this case, adhesion often constitutes the limiting factor for the maximum transferable load. In this investigation, a load-oriented innovative concept to increase the structural integrity of hybrid plastic-metal parts was developed. Local mechanical undercuts on the metal surface were created to generate an additional mechanical interlocking effect between the join partners. The aim is to find the best surface structure geometry to enhance mechanical bonding. Therefore, metal samples were structured by a new process and transferred to hybrid specimens by injection molding. For comparison, specimens with adhesive bonding (epoxy resin) of metal and plastic were prepared. The join partners aluminum AlCuMg1-2017 and PA6 as well as PA6GF30 were investigated. The evaluation of an increase in the structural integrity was determined using tensile tests. A significant improvement in joint strength compared with direct joining using adhesive bonding was achieved.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

417-424

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Brendecke, O. Götz, M. Groß, F. Schneider, Lightweight construction of chassis components, ATZ worldwide, 10 (2008) 32-36.

DOI: 10.1007/bf03225035

Google Scholar

[2] S.T. Amancio-Filho, J.F. dos Santos, Joining of Polymers and Polymer–Metal, Hybrid Structures: Recent Developments and Trends, J. Polym. Eng. Sci., 49 (2009) 1461–1476.

DOI: 10.1002/pen.21424

Google Scholar

[3] T. Wibbeke, M. Horstmann, R. Timmermann, Optimierte Blindnietverklebungen in Leichtbau-anwendungen, Adhäsion Kleben & Dichten, 49 (2005) 42-44.

DOI: 10.1007/bf03244082

Google Scholar

[4] T. Draht, Einseitig Verbinden ohne Vorlochen, Lightweight Design, 1 (2008) 20-23.

DOI: 10.1007/bf03223554

Google Scholar

[5] S.M. Goushegir, J.F. dos Santos, S.T. Amancio-Filho, Friction Spot Joining of aluminum AA2024/carbon-fiber reinforced poly(phenylene sulfide) composite single lap joints: Microstructure and mechanical performance, J. Mat. & Des. 54 (2014) 196-206.

DOI: 10.1016/j.matdes.2013.08.034

Google Scholar

[6] R. Szlosarek, T. Karall, N. Enzinger, C. Hahne, N. Meyer, Mechanical Testing of Flow Drill Screw Joints Between Fibre-Reinforced Plastics and Metals. J Mat. Test, 55 (2013) 737-742.

DOI: 10.3139/120.110495

Google Scholar

[7] U. Endemann, S. Glaser, M. Völker: Kunststoff und Metall im festen Verbund. In Kunststoffe. Carl Hanser Verlag, München, (2002).

Google Scholar

[8] C.M. Chimani: Leichtmetallentwicklungen für hybride Leichtbaulösungen. AIT Austrian Institut of Technologie. LKR Leichtmetallkompetenzzentrum Ranshofen GmbH. Fill-Academy, Gurten, (2012).

Google Scholar

[9] C. Hopmann, A. Böttcher, K. Fischer, Investigations of bonding approaches and initial bond strength for the intrinsic manufacturing of laminary bonded hybrids made of thermoplastic composite and metal. J. Plast. Tech. 9 (2013) 253-274.

Google Scholar

[10] G. Thomas, R. Vincent, G. Matthews, B. Dance, P. S Grant: Interface topography and residual stress distributions in W coatings for fusion armour applications. J. Mat. Sci. Eng. 477 (2008) 35-42.

DOI: 10.1016/j.msea.2007.05.120

Google Scholar

[11] G.R. Johnson, W.H. Cook: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: 7th International Symposium on Ballistics (1983) 514-546.

Google Scholar

[12] S. Abdel-Malek: Verformungs- und Versagensverhalten ausgewählter niedrig legierter Stähle unter Variation von Temperatur, Verformungsgeschwindigkeit und Spannungszustand [Dissertation]. – Chemnitz, Eigenverlag Technische Universität Chemnitz, 2006. - Vol. Werkstoffverhalten Band 2.

Google Scholar

[13] C.Z. Duan, T. Dou., Y.J. Cai, Y.Y. Li: Finite Element Simulation and Experiment of Chip Formation Process during High Speed Machining of AISI 1045 Hardened Steel, Int. J. Rec. T. in Eng. 1, 5, (2009) 46-50.

Google Scholar

[14] K. Dröder, M. Brand, A. Gerdes, T. Große, K. Dilger, F. Fischer, K. Lippky, H. Grefe: An innovative approach for joining of hybrid CFRP-Metal parts by mechanical undercuts Auf: EURO HYBRID - Materials and Structures 2014, Stade, Deutschland, 2014, ISBN 978-3-88355-402-0.

Google Scholar