Metal/FRP Connection Module – A Powder Metallurgical Approach

Article Preview

Abstract:

The Development of Fiber Reinforced Plastics (FRP) offers a great opportunity for applications in automobile industry, aeronautics and consumer goods to achieve light weight structures. However, the connection technology between FRP and mainly metallic based structures is the key to use the full potential of the FRP. Out of this motivation recent developments address this aspect.Using the powder metallurgical approach to generate a metal/ FRP connection module by spark plasma sintering a great variety is possible by integration of different metal and/ or fiber components. In this work aluminum and stainless steel was chosen for the upper and lower metallic side. The fibers integrated into the metal were glass, basalt and carbon fiber in one layer, two layer and mixed layer configuration. To connect the sintered module to greater CF weaves an infiltration process with a room temperature curing resin was used in a modified vacuum infusion (MVI) setup. In not optimized configuration the shear test after infiltration indicated an initial value for module shear strength above 20 MPa which can be enhanced in future developments by optimized armor between the upper and lower metal side and the number of integrated fiber layers of the connection module. A model is predicted to calculate the module shear strength in sintered state by multiplication of the armor area with the shear strength of the armor material. First experiments additionally show the possibility to weld the connection module directly to metallic structures.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

449-456

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Balle, S. Schmeer, G. Wagner, Mechanische Charakterisierung ultraschallgeschweisster Aluminium/CFK-Verbunde bei automobilrelevanten Temperaturen und Pruefgeschwindigkeiten, MP MATERIALPRUEFUNG 53, Nr. 1/2 (2011).

DOI: 10.3139/120.110194

Google Scholar

[2] S. Emrich, M. Kopnarski, Innovative Leichtbau-Fügetechnologien, Vakuum in Forschung und Praxis 25, Nr. 1 (2013) 27–33.

DOI: 10.1002/vipr.201300510

Google Scholar

[3] H. -D. Hesse, E. Hirsch, P. Horn, F. Kirchherr, J. Kopp, Verbindungsanordnung und Verfahren zum Verbinden von wenigstens eines ersten Bauteils aus einem kohlefaserverstärkten Verbundwerkstoff mit wenigstens einem zweiten Bauteil, Deutsches Patent, Stuttgart, (2013).

Google Scholar

[4] G. Wagner, D. Eifler, Bewertung der Eignung der Metall-Ultraschallschweißtechnik zum Fügen von Glasfasertextilien und Glasfaserverbundwerkstoffen, Textile Verbundbauweisen und Fertigungstechnologien für Leichtbaustrukturen des Maschinen- und Fahrzeugbaus, Hrsg.: W. Hufenbach, Die Medien AG, (2007).

DOI: 10.1002/9783527609017.ch76

Google Scholar

[5] E. Simancik, G. Jangg, H. Degischer, Short carbon fiber-aluminium matrix composite material prepared by extrusion of powder mixtures. Journal de Physique IV, 03/C7 (1993) 1775-1780.

DOI: 10.1051/jp4:19937281

Google Scholar

[6] C. Even, C. Arvieu, J.M. Quenisset, Powder route processing of carbon fibres reinforced titanium matrix composites, Composites Science and Technology 68 (2008) 1273–1281.

DOI: 10.1016/j.compscitech.2007.12.014

Google Scholar

[7] T.W. Chou, A. Kelly, A. Okura, Fibre-reinforced metal-matrix composites, Composites, Volume 16, Issue 3 (1985) 187–206.

DOI: 10.1016/0010-4361(85)90603-2

Google Scholar

[8] J. Zhu, L.H. Hihara; Corrosion of continuous alumina-fibre reinforced Al–2 wt. % Cu–T6 metal–matrix composite in 3. 15 wt. % NaCl solution, Corrosion Science, Volume 52, Issue 2 (2010) 406–415.

DOI: 10.1016/j.corsci.2009.09.028

Google Scholar

[9] A. Bakkara, S. Atayaa, Corrosion behaviour of stainless steel fibre-reinforced copper metal matrix composite with reference to electrochemical response of its constituents, Corrosion Science, Volume 85 (2014) 343–351.

DOI: 10.1016/j.corsci.2014.04.037

Google Scholar

[10] T. Hutsch, T. Schubert, T. Weissgaerber, B. Kieback, Graphite metal composites with tailored physical properties, Emerging Materials Research, Volume 1 Issue EMR2 (2012) 107–114.

DOI: 10.1680/emr.11.00021

Google Scholar