Joining of Aluminum Matrix Composites and Stainless Steel by Arc Brazing

Article Preview

Abstract:

To enlarge the field of application of aluminum matrix composites (AMC) suitable joining technologies are necessary. Especially dissimilar joints like between AMC and stainless steel are of interest. In this work the arc brazing of this material combination is investigated. A new filler based on the ternary system Al-Ag-Cu is used. The results of wetting tests of the base filler and adapted variants are described and discussed. Wetting angles and microstructure of the interfaces are regarded.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

393-400

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Xiu, W. Yang, G. Chen, L. Jiang, K. Mac, G. Wu, Microstructure and tensile properties of Si3N4p/2024Al composite fabricated by pressure infiltration method, Mat. a. Designs 33 (2012) 350-358.

DOI: 10.1016/j.matdes.2011.03.001

Google Scholar

[2] S. A. Sajjadi, H. R. Ezatpour, M. T. Parizi, Comparison of microstructure and mechanical properties of A356 aluminium alloy/Al2O3 composites fabricated by stir and compo-casting processes, Mat. a. Designs 34 (2012) 106-111.

DOI: 10.1016/j.matdes.2011.07.037

Google Scholar

[3] M. Staubach, S. Jüttner, U. Füssel, M. Dietrich, Fügen von Stahl-Aluminium-Mischverbindungen mit energiereduzierten MSG-Verfahren und Zusatzwerkstoffen auf Aluminium- und Zinkbasis, Schw. u. Schneid. 6 (2007) 302-313.

Google Scholar

[4] M. Steiners, F. Höcker, Einfluss der Beschichtungen beim stoffschlüssigen Lichtbogenfügen von Stahl mit Aluminium, Mat. u. Werkst. 38 (2007) 559-564.

DOI: 10.1002/mawe.200700170

Google Scholar

[5] A. Ureña, M. D. Escalera, L. Gil, Influence of interface reactions on fracture mechanisms in TIG arc-welded aluminium matrix composites, Comp. Scien. and Tech. 60 (2000) 613-622.

DOI: 10.1016/s0266-3538(99)00168-2

Google Scholar

[6] T. Prater, Solid-state joining of metal matrix composites: a survey of challenges and potential solutions, Mat. a. Man. Proc. 26 (2011) 636-648.

DOI: 10.1080/10426914.2010.492055

Google Scholar

[7] P. P. Lean, L. Gil, A. Ureña, Dissimilar welds between unreinforced AA6082 and AA6092/SiC/25p composite by pulsed-MIG arc welding using reinforced filler alloys (Al-5Mg and Al-Si), J. of Mat. Proc. Tech. 143-144 (2003) 846-850.

DOI: 10.1016/s0924-0136(03)00331-5

Google Scholar

[8] L. Wan, Y. Huang, Z. Lv, S. Lv, J. Feng, Effect of self-support friction stir welding on microstructure and microhardness of 6082-T6 aluminum alloy joint, Mat. a. Design 55 (2014) 197-203.

DOI: 10.1016/j.matdes.2013.09.073

Google Scholar

[9] G. Qin, Z. Lei, Y. Su, B. Fu, X. Meng, S. Lin, Large spot laser assisted GMA brazing-fusion welding of aluminium alloy to galvanized steel, J. of Mat. Proc. Tech. 214 (2014) 2684-2692.

DOI: 10.1016/j.jmatprotec.2014.06.011

Google Scholar

[10] J. L. Song, S. B. Lin, C. L. Yang, G. C. Ma, H. Liu, Spreading behavior and microstructure characteristics of dissimilar metals TIG welding-brazing of aluminum alloy to stainless steel, Mat. Scien. a. Eng.: A 509 (2009) 31-40.

DOI: 10.1016/j.msea.2009.02.036

Google Scholar

[11] B. Wielage, H. Klose, Das Aluminiumlöten von Wärmetauschern, DVS-Berichte 166 (1995) 88-90.

Google Scholar

[12] B. Wielage, L. Martinez, Aluminiumlöten bei 550°C – Eigenschaften von ZnAl-Verbindungen, DVS-Berichte 212 (2001) 214-217.

Google Scholar

[13] B. Wielage, F. Trommer, Löten von Aluminium mit Zinkbasisloten, Schweiß. u. Schneid. 5 (2003) 273-275.

Google Scholar

[14] K. C. H. Kumar, O. Arkens, Silver – Aluminium – Copper, Springer Materials – The Landolt-Börnstein Database (2014).

Google Scholar

[15] L. Dorn, et al, Hartlöten und Hochtemperaturlöten, expert Verl., Renningen, (2007).

Google Scholar

[16] Y. Yuan, T.R. Lee, Contact Angle and Wetting Properties, Springer-Verlag, Berlin Heidelberg, (2013).

Google Scholar

[17] P. Zaremba, Hart- und Hochtemperaturlöten, DVS-Verlag, Düsseldorf, (1988).

Google Scholar

[18] N.N., Brazing Handbook, American Welding Society, Miami, (1991).

Google Scholar

[19] W. Müller, J. -U. Müller, Löttechnik – Leitfaden für die Praxis, Dt. Verlag für Schweißtechnik, Düsseldorf, (1995).

DOI: 10.1002/maco.19960471015

Google Scholar

[20] S. Liu, S. Zhao, Q. Zhang, Phase Diagram of the Aluminium-Copper-SilverAlloy System, Acta Metall. Sin. 19 (1983) 70-73.

Google Scholar

[21] V.T. Witusiewicz, U. Hecht, S.G. Fries, S. Rex, The Ag–Al–Cu system: II. A thermodynamic evaluation of the ternary system, J. o. Alloys a. Comp. 387 (2005) 217-227.

DOI: 10.1016/j.jallcom.2004.06.078

Google Scholar

[22] B. Wielage, I. Hoyer, T. Lampke, Entwicklung niedrigschmelzender Al-Lote für hochfeste Al-Legierungen, DVS-Berichte 263 (2010) 336-370.

Google Scholar

[23] G. Schmid, H. Wetter, Stanzniet- und Hybridfügeverfahren im Karosseriebau, Join-Tec (2005) 42–57.

Google Scholar

[24] Data sheet 1. 4301, URL: http: /www. ll-adelsdorf. com/ pdfdoku/Edelstahl/1. 4301. pdf; 13. 06. (2014).

Google Scholar

[25] H. Springer, A. Kostka, J.F. Dos Santos, D. Raabe, Influence of intermetallic phases and Kirkendall-porosity on the mechanical properties of joints between steel and aluminium alloys, Mat. Scien. a. Eng.: A 528 (2011) 4630-4642.

DOI: 10.1016/j.msea.2011.02.057

Google Scholar

[26] A.K. Bulla, Messungen der fest-flüssig Grenzflächenenergie in ternären Systemen, dissertation Aachen Germany, (2012).

Google Scholar