Online Poling of Thermoplastic-Compatible Piezoceramic Modules during the Manufacturing Process of Active Fiber-Reinforced Composites

Article Preview

Abstract:

Due to high specific properties and the ability for the realisation of short cycle times within the production process, the use of fiber-reinforced thermoplastic composites offers a high potential for high volume applications. Furthermore, the layered built-up and the according manufacturing processes of these materials give the possibility to integrate functional elements, like electronic components or piezoelectric sensor/actuator modules. Within the collaborative research center CRC/TRR 39 “Production Technologies for light metal and fiber-reinforced composite-based components with integrated piezoceramic Sensors and Actuators”, the integration of piezoceramic modules into lightweight structures ready for series production is investigated. This paper presents the manufacturing process of active fiber-reinforced thermoplastic composites. Here, the focus is on experimental investigations covering the process-integrated poling of novel piezoceramic modules during the manufacturing of active fiber-reinforced thermoplastic components. Therefore, laboratory and process-oriented tests are performed for the determination of appropriate parameters for the pressing and poling process. The functionality of the embedded and poled TPM is validated by the excitation of an active component structure and the optical measurement of the vibration behaviour using a laser scanning vibrometer.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

787-794

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.F. Gibson, A review of recent research on mechanics of multifunctional composite materials and structures. Composite Structures 92 (2010)2793–2810.

DOI: 10.1016/j.compstruct.2010.05.003

Google Scholar

[2] J. Nuffer, T. Pfeiffer, N. Flaschenträger, T. Melz, B. Brückner, C. Freytag, J. Schnetter, A. Schönecker, Piezoelectric composites: application and reliability in adaptronics International Symposium on Piezocomposite Applications, Dresden, Germany, 24-25 September (2009).

Google Scholar

[3] W. Hufenbach, M. Gude, T. Heber, Development of novel piezoceramic modules for adaptive thermoplastic composite structures capable for series production, Sensors and Actuators A 156 (2009) 22-27.

DOI: 10.1016/j.sna.2009.04.006

Google Scholar

[4] G. Hansch, Optimierung des PbO-Haushaltes in undotierten und SKN-substituierten PZT-Fasern: Gefüge und Eigenschaften, Bayrische Julius-Maximilians-Universität Würzburg dissertation (2003).

Google Scholar

[5] E.F. Crawley, J. De Luis, Use of piezoelectric actuators as elements of intelligent structures, AIAA Journal 25: 10 (1987), 1373-1385.

DOI: 10.2514/3.9792

Google Scholar

[6] W. Wilkie, Method of fabricating a piezoelectric composite apparatus U.S. Patent No. 6. 629. 341, (2003).

Google Scholar

[7] W. Wilkie, R. Bryant, Piezoelectric macro-fiber composite actuator and manufacturing method European Patent EP 1 983 584 A2, (2008).

Google Scholar

[8] R.B. Williams, B.W. Grimsley, D.J. Inman, W.K. Wilkie, Manufacturing and cure kinetics modeling for macro fiber composite actuators, Journal of Reinforced Plastics and Composites 23 (2004) 1741–1754.

DOI: 10.1177/0731684404040171

Google Scholar

[9] W. Hufenbach, M. Gude, T. Heber, Embedding versus adhesive bonding of adapted piezoceramic modules for function-integrative thermoplastic composite structures Composites Science and Technology 71 (2001) 1132–1137.

DOI: 10.1016/j.compscitech.2011.03.019

Google Scholar

[10] T. Heber, Integrationsgerechte Piezokeramik-Module und großserienfähige Fertigungstechnologien für multifunktionale Thermoplastverbundstrukturen, Technische Universität Dresden, dissertation (2011).

Google Scholar

[11] W. Hufenbach, M. Gude, T. Heber, Design and testing of novel piezoceramic modules for adaptive thermoplastic composite structures, Smart Mater. Struct. 18 (2009) 045012-045019.

DOI: 10.1088/0964-1726/18/4/045012

Google Scholar

[12] L. Bottenbruch, R. Binsack, Polyamide, Kunststoff-Handbuch: Technische Thermoplaste. Bd. 3/4. Hanser Verlag, (1998).

Google Scholar