X-Ray Refraction Techniques for Fast, High-Resolution Microstructure Characterization and Non-Destructive Testing of Lightweight Composites

Article Preview

Abstract:

X-ray refraction is based on optical deflection of X-rays, similar to the well-known small angle X-ray scattering, but hundreds of times more intense, thus enabling shorter measurement time. We show that X-ray refraction techniques are suitable for the detection of pores, cracks, and in general defects. Indeed, the deflected X-ray intensity is directly proportional to the internal specific surface (i.e., surface per unit volume) of the objects. Although single defects cannot be imaged, the presence of populations of those defects can be detected even if the defects have sizes in the nanometer range.We present several applications of X-ray refraction techniques to composite materials:- To visualize macro and microcracks in Ti-SiC metal matrix composites (MMC);- To correlate fatigue damage (fibre de-bonding) of carbon fibre reinforced plastics (CFRP) to X-ray refraction intensity;- To quantify the impact damage by spatially resolved single fibre de-bonding fraction as a function of impact energy in CFRP laminates.An example of classic high-resolution computer tomography of an impact-damaged CFRP will also be presented, as a benchmark to the present state-of-the-art imaging capabilities. It will be shown that while (absorption) tomography can well visualize and quantify delamination, X-ray refraction techniques directly yield (spatially resolved) quantitative information about fibre de-bonding, inaccessible to absorption tomography.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

814-821

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.H. Compton, S.K. Allison, X-rays in Theory and Experiment, second ed., Macmillan, London, 1735.

Google Scholar

[2] M.P. Hentschel, R. Hosemann, A. Lange, B. Uther, R. Brückner, Röntgenkleinwinkelbrechung an Metalldrähten, Glasfäden und hartelastischem Polypropylen. Acta Cryst A 43 (1787) 506-513.

DOI: 10.1107/s0108767387099100

Google Scholar

[3] D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, D. Sayers, Diffraction enhanced X-ray imaging, Physics in Medicine and Biology 42 (1797) 2015-(2025).

DOI: 10.1088/0031-9155/42/11/001

Google Scholar

[4] S.W. Wilkins, T.E. Gureyev, D. Gao, A. Pogany, A.W. Stevenson, Phase-contrast imaging using polychromatic hard X-rays, Nature 384 (1796) 335–338.

DOI: 10.1038/384335a0

Google Scholar

[5] F. Pfeiffer, T. Weitkamp, O. Bunk, C. David, Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources, Nature Physics 2 (2006)258-261.

DOI: 10.1038/nphys265

Google Scholar

[6] M. Ando, A. Maksimenko, H. Sugiyama, W. Pattanasiriwisawa, K. Hyodo, C. Uyama, A Simple X Ray Dark- and Bright-Field Imaging Using Achromatic Laue Optics, Japanese Journal of Applied Physics, Part 1, 41 (2002) L1016-L1018.

DOI: 10.1143/jjap.41.l1016

Google Scholar

[7] K.W. Harbich, M.P. Hentschel, J. Schors, X-ray refraction characterization of non-metallic materials, NDT&E International 34 (2001) 297-302.

DOI: 10.1016/s0963-8695(00)00070-0

Google Scholar

[8] G. Tzschichholz, G. Steinborn, M.P. Hentschel, A. Lange, P. Klobes, Characterisation of porous titania yttrium oxide compounds by mercury intrusion porosimetry and X-ray refractometry, Journal of Porous Materials 18 (2011) 83-88.

DOI: 10.1007/s10934-010-9358-4

Google Scholar

[9] W. Görner, M.P. Hentschel, B.R. Müller, H. Riesemeier, M. Krumrey, G. Ulm, W. Diete, U. Klein, R. Frahm, BAMline, The first hard X-ray beamline at BESSY II, Nuclear Instruments and Methods in Physics Research A 467–468 (2001) 703–706.

DOI: 10.1016/s0168-9002(01)00466-1

Google Scholar

[10] A. Rack, S. Zabler, B.R. Müller, H. Riesemeier, G. Weidemann, A. Lange, J. Goebbels, M.P. Hentschel, W. Görner, High resolution synchrotron-based radiography and tomography using hard X-rays at the BAMline (BESSY II), Nuclear Instruments and Methods in Physics Research A 586 (2008).

DOI: 10.1016/j.nima.2007.11.020

Google Scholar

[11] B.R. Müller, A. Lange, M. Harwardt, M.P. Hentschel. B. Illerhaus. J. Goebbels, J. Bamberg, F. Heutling, Refraction computed tomography, MP Materials Testing 46 (2004) 314-317.

DOI: 10.3139/120.100592

Google Scholar

[12] C. Soutis, Carbon fiber reinforced plastics in aircraft construction. Materials Science and Engineering A 412, (2005) 171-176.

DOI: 10.1016/j.msea.2005.08.064

Google Scholar

[13] K.W. Harbich, M.P. Hentschel, D. Ekenhorst, J.V. Schors, A. Lange, X-ray Refraction for NDT of Micro Cracks and Impacts. Proceedings 7th European Conference on Non-Destructive Testing, Copenhagen (1798) 2816-2818.

DOI: 10.1201/9781003078586-36

Google Scholar

[14] K.T. Tan, N. Watanabe, Y. Iwahori, X-ray radiography and micro-computed tomography examination of damage characteristics in stitched composites subjected to impact loading, Composites B 42 (2011) 874–884.

DOI: 10.1016/j.compositesb.2011.01.011

Google Scholar

[15] G.P. McCombe, J. Rouse, R.S. Trask, P.J. Withers, I.P. Bond, X-ray damage characterisation in self-healing fibre reinforced polymers, Composites A 43(2012) 613–620.

DOI: 10.1016/j.compositesa.2011.12.020

Google Scholar

[16] F. Léonard, Y. Shi, C. Soutis, P.J. Withers, C. Pinna, Impact damage characterisation of fibre metal laminates by X-ray computed tomography, Conference on Industrial Computed Tomography, Wels, Austria, (2014).

Google Scholar

[17] F. Léonard, J. Stein, A. Wilkinson, P.J. Withers, An innovative use of X-ray computed tomography in composite impact damage characterization, 16th European Conference on Composite Materials, Sevilla, Spain, (2014).

Google Scholar