Morphological Impact on the Fatigue Behaviour of Short Fibre Reinforced Polypropylene

Article Preview

Abstract:

The fatigue behaviour of short fibre reinforced thermoplastics is highly dependent on the morphological conditions. The capability of simulating fatigue behaviour and damage mechanisms of fibre reinforced polypropylene increasingly interests industrial partners of the presented study. For the morphological analysis both destructive and non-destructive methods such as computed Xray tomography and a combination of polishing and microscopic methods were applied. The determination of the composite morphology (fibre distribution, orientation tensor, fibre length distribution) was assisted by several methods of specific automatic data evaluation concepts. Fatigue testing was done on a servohydraulic dynamic testing machine using a testing frequency of 10 Hz, which is in the range of the real loading in application of the components. The analysis included thermal investigations (IR camera) and local strain measurements.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

830-837

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Seidel, F. Hahn, Werkstofftechnik: Werkstoffe - Eigenschaften - Prüfung - Anwendung, 9. neu bearb. Aufl., Hanser, München, (2012).

DOI: 10.3139/9783446431348.bm

Google Scholar

[2] T.M. Dick, P. -Y.B. Jar, J. -J.R. Cheng, Prediction of fatigue resistance of short-fibre-reinforced polymers, International Journal of Fatigue Vol 31 (2009) 284-291.

DOI: 10.1016/j.ijfatigue.2008.08.011

Google Scholar

[3] T. Koch, M. Palmstingl, D. Salaberger, M. Arikan, R. Klawatsch, P. Fischer, J. Karigl, T. Paier, Fatigue behaviour of short-fibre reinforced polypropylene described by experiment and simulation, Internationale wissenschaftliche Tagung Polymerwerkstoffe – Polymertec 2014, Merseburg, Deutschland (2014).

DOI: 10.4028/www.scientific.net/msf.825-826.830

Google Scholar

[4] D. Salaberger, K.A. Kannappan, J. Kastner, Evaluation of Computed Tomography Data from Fibre Reinforced Polymers to Determine Fibre Length Distribution, International Polymer Processing 27 (2011) 283-291.

DOI: 10.3139/217.2441

Google Scholar

[5] D. Salaberger, S. Oberpeilsteiner, J. Kastner, T. Koch, M. Palmstingl, Modellierung von Schädigungsmechanismen von kurzfaserver-stärkten Polymeren mit Hilfe von Computertomografie, Tagung Werkstoffprüfung 2013, Neu-Ulm, Deutschland (2013) 217-222.

Google Scholar

[6] G. Fischer, P. Eyerer, Measuring spatial orientation of short fiber reinforced thermoplastics by image analysis, Polymer Composites Vol 9 No 4 (1988) 297-304.

DOI: 10.1002/pc.750090409

Google Scholar

[7] A. Bernasconi, F. Cosmi, P.J. Hine, Analysis of fibre orientation distribution in short fibre reinforced polymers: A comparison between optical and tomographic methods, Composites Science and Technology 72 (2012) 2002–(2008).

DOI: 10.1016/j.compscitech.2012.08.018

Google Scholar

[8] C. Eberhardt, A. Clarke, M. Vincent, T. Giroud, S. Flouret, Fibre-orientation measurements in short-glass-fibre composites-II: a quantitative error estimate of the 2D image analysis technique, Composites Science and Technology 61 (2001).

DOI: 10.1016/s0266-3538(01)00106-3

Google Scholar

[9] B. Mlekusch, Fibre orientation in short-fibre-reinforced thermoplastics II. Quantitative measurements by image analysis, Composites Science and Technology 59 (1999) 547-560.

DOI: 10.1016/s0266-3538(98)00101-8

Google Scholar

[10] C. Eberhardt, A. Clarke, Fibre-orientation measurements in short-glass-fibre composites. Part I: automated, high-angular-resolution measurement by confocal microscopy, Composites Science and Technology 61 (2001) 1389-1400.

DOI: 10.1016/s0266-3538(01)00038-0

Google Scholar

[11] G. Zak, M. Haberer, C.B. Park, B. Benhabib, Estimation of average fibre length in short-fibre composites by a two-section method, Composites Science and Technology 60 (2000) 1763-1772.

DOI: 10.1016/s0266-3538(00)00065-8

Google Scholar