Characterization of the Mechanical and Fatigue Behavior of Braided Composites Made of Twisted Yarns

Abstract:

Article Preview

In this study an experimental investigation was undertaken to characterize the influence of twisted yarns on the mechanical and fatigue behavior of 2D braided composites with a braiding angle of ±45°. Rectangular specimen made of untwisted and twisted carbon yarns are tested in the braiding (±45° fiber orientation) and in the yarn direction (0/90° fiber orientation). Experimental results will include modulus and strength values based on tensile and compression tests for both test directions. In addition, the effect of fiber twisting on S/N-curves are discussed.

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Edited by:

Christian Edtmaier and Guillermo Requena

Pages:

876-882

Citation:

M. Wolfahrt et al., "Characterization of the Mechanical and Fatigue Behavior of Braided Composites Made of Twisted Yarns", Materials Science Forum, Vols. 825-826, pp. 876-882, 2015

Online since:

July 2015

Export:

Price:

$41.00

* - Corresponding Author

[1] C. Ayranci, J. Carey, 2D braided composites: A review for stiffness critical applications, Composite Structure 85 (2008) 43-58.

DOI: https://doi.org/10.1016/j.compstruct.2007.10.004

[2] Information on http: /www. rolandberger. com.

[3] Y. Yan, S.V. Hoa, An energy approach for the prediction of effective stiffness of 2-D braided composites, in: Proceedings of 12th International Conference of Composites, Paris, 1999, paper 1233, ISBN 2-9514526-2-4.

[4] L. V. Smith, S. R. Swanson, Strength design with 2-D triaxial braid textile composites, Composite Science and Technology, 56 (1996) 359-365.

DOI: https://doi.org/10.1016/0266-3538(95)00113-1

[5] J. E. Masters, P. J. Minguet, Effect of preform architecture on modulus and strength of two dimensional, biaxially braided, textile composite materials, in: B. Deo and C. R. Saff (Eds. ), Composite Materials: Testing and Design, ASTM STP 1274, 1996, pp.201-217.

DOI: https://doi.org/10.1520/stp16546s

[6] J.E. Masters, P.G. Ifju, A phenomenological study of triaxially braided textile composites loaded in tension, Composite Science and Technology, 56 (1996) 347-358.

DOI: https://doi.org/10.1016/0266-3538(95)00106-9

[7] P.J. Falzon, I. Herzberg, Mechanical performance of 2D-Braided carbon/epoxy composite, Composite Science and Technology, 58 (1998) 253-265.

[8] J.S. Tate, A.D. Kettar, J.D. Whitcomb, Effect of braiding angle on fatigue performance of biaxial braided composites, International Journal of Fatigue, 28 (2006) 1239-1247.

DOI: https://doi.org/10.1016/j.ijfatigue.2006.02.009

[9] L.V. Smith, S.R. Swanson, Failure of braided carbon/epoxy composite under biaxial compression, Journal of Composite Materials 28 (1994) 1158-1178.

DOI: https://doi.org/10.1177/002199839402801206

[10] K. Birkefeld, M. Röder, T. von Reden, M. Bulat, K. Drechsler, Characterization of Biaxial and Triaxial Braids: Fiber Architecture and Mechanical Properties, Applied Composite Materials, 19 (2012) 259-273.

DOI: https://doi.org/10.1007/s10443-011-9190-2

[11] M. WOLFAHRT, G. PINTER, S. ZAREMBA, T. VON REDEN, C. EBEL, EFFECT OF PREFORM ARCHITECTURE ON THE MECHANICAL AND FATIGUE BEHAVIOR OF BRAIDED COMPOSITES FOR GENERATING DESIGN ALLOWABLES, IN: PROCEEDINGS OF SAMPE EUROPE. PARIS, 2009, PP. 277-282.

[12] L.V. Naik, R. Kuchibhotla, Analytical study of strength and failure behavior of plain weave fabric composites made of twisted yarns, Composites Part A 32 (2002) 697-708.

DOI: https://doi.org/10.1016/s1359-835x(02)00012-x

[13] J.H. Byum, T. -W. Chou, Effect of yarn twist on the elastic property of composites, in: A. Poursartip, K. Street, Proceedings of Tenth International Conference on Composite Materials, Woodhead Publishing, Cambridge, 1995, pp.293-299.

[14] ASTM D3171, Standard Test Methods for Constituent Content of Composite Materials, ASTM International. (2011).

[15] Airbus Test Method AITM 1-0007, Fiber Reinforced Plastics - Determination of Plain, Open Hole and Filled Hole Tensile Strength, Airbus Industrie. (2004).

[16] Airbus Test Method AITM 1-0008, Fiber Reinforced Plastics Determination of Plain, Open Hole and Filled Hole Compression Strength, Airbus Industrie. (2010).

DOI: https://doi.org/10.3403/30282957u

[17] ASTM D3039, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International. (2008).

[18] ASTM D3410, Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading, ASTM International. (2008).

DOI: https://doi.org/10.1520/d3410_d3410m-03r08

[19] MIL-HDBK-17-1E, Polymer Matrix Composites, Volume 1, Guidelines for Characterization of Structural Materials, US Army Research Laboratory, Department of Defence, Aberdeen Proving Ground, USA. (1997).

[20] F. Guo-Dong, L. Jun, W. Yu, W. Bao-Lai, The effect of yarn distortion on the mechanical properties of 3D four-directional braided composites, Composites Part A 40 (2009) 343-350.

DOI: https://doi.org/10.1016/j.compositesa.2008.12.007