[1]
N. Chawla, K. K. Chawla, Metal-matrix composites in ground transportation, JOM 58 (2006) 67-70.
DOI: 10.1007/s11837-006-0231-5
Google Scholar
[2]
E. S. C. Chin, Army focused research team on functionally graded armor composites, Mater. Sci. Eng. A259 (1999) 155-161.
DOI: 10.1016/s0921-5093(98)00883-1
Google Scholar
[3]
S. Kumar, W. A. Curtin, Crack interaction with microstructure, Mater. Today 10 (2007) 34-44.
Google Scholar
[4]
S. Martin, S. Wolf, U. Martin, L. Krüger, D. Rafaja, Deformation mechanisms in austenitic TRIP/TWIP steel as a function of temperature, Met. Mat. Trans. A (2014), DOI: 10. 1007/s11661-014-2684-4.
DOI: 10.1007/s11661-014-2684-4
Google Scholar
[5]
S. D. Antolovich, B. Singh, On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels, Metall. Trans. 2 (1971) 2135-2141.
DOI: 10.1007/bf02917542
Google Scholar
[6]
Y. Zhou, Y. Guo, D. Li, X. Duan, Effects of load mode on mechanical properties of ZrO2(2Y)/TRIP steel composites, Trans. Nonferrous Met. Soc. China 13 (2003) 1086-1091.
Google Scholar
[7]
S. Martin, S. Richter, S. Decker, U. Martin, L. Krüger, D. Rafaja, Reinforcing mechanisms of Mg-PSZ particles in highly-alloyed TRIP steel, Steel Res. Int. 82 (2011) 1133-1140.
DOI: 10.1002/srin.201100099
Google Scholar
[8]
D. Ehinger, L. Krüger, U. Martin, C. Weigelt, C. G. Aneziris, Strain rate effect and material behavior of TRIP-steel/Zirconia honeycomb structures, Steel Res. Int. 82 (2011) 1048- 1056.
DOI: 10.1002/srin.201100076
Google Scholar
[9]
B. G. Park, A. G. Crosky, A. K. Hellier, Fracture toughness of microsphere Al2O3–Al particulate metal matrix composites, Composites: Part B 39 (2008) 1270-1279.
DOI: 10.1016/j.compositesb.2008.01.005
Google Scholar
[10]
A. Rabiei, L. Vendra, T. Kishi, Fracture behavior of particle reinforced metal matrix composites, Composites: Part A 39 (2008) 294-300.
DOI: 10.1016/j.compositesa.2007.10.018
Google Scholar
[11]
Y. Flom, R. J. Arsenault, Effect of particle size on fracture toughness of SiC/Al composite material, Acta metal. 37 (1989) 2413-2423.
DOI: 10.1016/0001-6160(89)90039-4
Google Scholar
[12]
H. Jelitto, F. Hackbarth, H. Özcoban, G. A. Schneider, Automated control of stable crack growth for R-curve measurements in brittle materials. Exp. Mech. 53 (2013) 163-170.
DOI: 10.1007/s11340-012-9622-4
Google Scholar
[13]
K. Tohgo, T. Suzuki, H. Araki, Evaluation of R-curve behavior of ceramic–metal functionally graded materials by stable crack growth, Eng. Fract. Mech. 72 (2005) 2359-2372.
DOI: 10.1016/j.engfracmech.2005.03.006
Google Scholar
[14]
F. Felten, G. A. Schneider, T. Sadowski, Estimation of R-curve in WC/Co cermet by CT test, Int. J. Refract. Met. Hard Mater. 26 (2008) 55-60.
DOI: 10.1016/j.ijrmhm.2007.01.005
Google Scholar
[15]
A. Jahn, A. Kovalev, A. Weiß, S. Wolf, L. Krüger, P. R. Scheller, Temperature depending influence of the martensite formation on the mechanical properties of high-alloyed Cr-Mn-Ni as-cast steels, Steel Res. Int. 82 (2011) 39-44.
DOI: 10.1002/srin.201000228
Google Scholar
[16]
ISO 12135: 2002, Metallic materials - Unified method of test for the determination of quasistatic fracture toughness.
Google Scholar
[17]
ASTM E 1820 - 06, Standard Test Method for Measurement of Fracture Toughness.
Google Scholar
[18]
DIN EN 843-2: 2006, Advanced technical ceramics - Mechanical properties of monolithic ceramics at room temperature - Part 2: Determination of Young's modulus, shear modulus and Poisson's ratio.
DOI: 10.3403/30125781u
Google Scholar
[19]
J. M. Krafft, A. M. Sullivan, R. W. Boyle, Effect of dimensions on fast fracture instability of notched sheets, Proceedings: Crack Propagation Symposium 1 (1962) 8-26.
Google Scholar