Fracture Mechanics Characterization of Sintered 30 Vol.-% Al2O3/TRIP Steel Composites Using SENB Miniature Samples

Article Preview

Abstract:

Ceramic particle reinforced metal matrix composites (PRMMCs) combine the strength and brittleness of ceramics with the toughness of a metallic matrix. In order to use these materials in construction and operational design their fracture mechanical behavior must be evaluated. In this study, a 30 vol.-% Al2O3 reinforced austenitic TRIP steel processed by powder metallurgical technique was investigated using precracked miniature SENB-specimens in 3-point-bending. An elastic-plastic analysis by means of the J-integral method in combination with optical crack observation showed the materials ability of stable crack growth, i. e. R-curve behavior. In addition to the mechanical tests microstructural studies were performed, whereby particle debonding and fracture as well as martensitic phase transformation and crack bridging within the matrix were identified as fracture energy dissipating mechanisms.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

899-906

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Chawla, K. K. Chawla, Metal-matrix composites in ground transportation, JOM 58 (2006) 67-70.

DOI: 10.1007/s11837-006-0231-5

Google Scholar

[2] E. S. C. Chin, Army focused research team on functionally graded armor composites, Mater. Sci. Eng. A259 (1999) 155-161.

DOI: 10.1016/s0921-5093(98)00883-1

Google Scholar

[3] S. Kumar, W. A. Curtin, Crack interaction with microstructure, Mater. Today 10 (2007) 34-44.

Google Scholar

[4] S. Martin, S. Wolf, U. Martin, L. Krüger, D. Rafaja, Deformation mechanisms in austenitic TRIP/TWIP steel as a function of temperature, Met. Mat. Trans. A (2014), DOI: 10. 1007/s11661-014-2684-4.

DOI: 10.1007/s11661-014-2684-4

Google Scholar

[5] S. D. Antolovich, B. Singh, On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels, Metall. Trans. 2 (1971) 2135-2141.

DOI: 10.1007/bf02917542

Google Scholar

[6] Y. Zhou, Y. Guo, D. Li, X. Duan, Effects of load mode on mechanical properties of ZrO2(2Y)/TRIP steel composites, Trans. Nonferrous Met. Soc. China 13 (2003) 1086-1091.

Google Scholar

[7] S. Martin, S. Richter, S. Decker, U. Martin, L. Krüger, D. Rafaja, Reinforcing mechanisms of Mg-PSZ particles in highly-alloyed TRIP steel, Steel Res. Int. 82 (2011) 1133-1140.

DOI: 10.1002/srin.201100099

Google Scholar

[8] D. Ehinger, L. Krüger, U. Martin, C. Weigelt, C. G. Aneziris, Strain rate effect and material behavior of TRIP-steel/Zirconia honeycomb structures, Steel Res. Int. 82 (2011) 1048- 1056.

DOI: 10.1002/srin.201100076

Google Scholar

[9] B. G. Park, A. G. Crosky, A. K. Hellier, Fracture toughness of microsphere Al2O3–Al particulate metal matrix composites, Composites: Part B 39 (2008) 1270-1279.

DOI: 10.1016/j.compositesb.2008.01.005

Google Scholar

[10] A. Rabiei, L. Vendra, T. Kishi, Fracture behavior of particle reinforced metal matrix composites, Composites: Part A 39 (2008) 294-300.

DOI: 10.1016/j.compositesa.2007.10.018

Google Scholar

[11] Y. Flom, R. J. Arsenault, Effect of particle size on fracture toughness of SiC/Al composite material, Acta metal. 37 (1989) 2413-2423.

DOI: 10.1016/0001-6160(89)90039-4

Google Scholar

[12] H. Jelitto, F. Hackbarth, H. Özcoban, G. A. Schneider, Automated control of stable crack growth for R-curve measurements in brittle materials. Exp. Mech. 53 (2013) 163-170.

DOI: 10.1007/s11340-012-9622-4

Google Scholar

[13] K. Tohgo, T. Suzuki, H. Araki, Evaluation of R-curve behavior of ceramic–metal functionally graded materials by stable crack growth, Eng. Fract. Mech. 72 (2005) 2359-2372.

DOI: 10.1016/j.engfracmech.2005.03.006

Google Scholar

[14] F. Felten, G. A. Schneider, T. Sadowski, Estimation of R-curve in WC/Co cermet by CT test, Int. J. Refract. Met. Hard Mater. 26 (2008) 55-60.

DOI: 10.1016/j.ijrmhm.2007.01.005

Google Scholar

[15] A. Jahn, A. Kovalev, A. Weiß, S. Wolf, L. Krüger, P. R. Scheller, Temperature depending influence of the martensite formation on the mechanical properties of high-alloyed Cr-Mn-Ni as-cast steels, Steel Res. Int. 82 (2011) 39-44.

DOI: 10.1002/srin.201000228

Google Scholar

[16] ISO 12135: 2002, Metallic materials - Unified method of test for the determination of quasistatic fracture toughness.

Google Scholar

[17] ASTM E 1820 - 06, Standard Test Method for Measurement of Fracture Toughness.

Google Scholar

[18] DIN EN 843-2: 2006, Advanced technical ceramics - Mechanical properties of monolithic ceramics at room temperature - Part 2: Determination of Young's modulus, shear modulus and Poisson's ratio.

DOI: 10.3403/30125781u

Google Scholar

[19] J. M. Krafft, A. M. Sullivan, R. W. Boyle, Effect of dimensions on fast fracture instability of notched sheets, Proceedings: Crack Propagation Symposium 1 (1962) 8-26.

Google Scholar