[1]
R.F. Gibson, A review of recent research on mechanics of multifunctional composite materials and structures, Comp. Struct. 92/12 (2010) 2793–2810.
DOI: 10.1016/j.compstruct.2010.05.003
Google Scholar
[2]
R. Jones, S. Pitt, A. Brunner and D. Hui, Application of the Hartman–Schijve equation to represent mode I and mode II fatigue delamination growth in composites, Comp. Struct. 94/4 (2012) 1343–1351.
DOI: 10.1016/j.compstruct.2011.11.030
Google Scholar
[3]
J. Schön, T. Nyman, A. Blom and H. Ansell, A numerical and experimental investigation of delamination behaviour in the DCB specimen, Comp. Sci. Tech. 60 (2000) 173–184.
DOI: 10.1016/s0266-3538(99)00113-x
Google Scholar
[4]
R.H. Martin, Incorporating interlaminar fracture mechanics into design, Proc. Inst. Mech. Eng. Part L: J. Mat. Des. Appl. 214/2 (2000) 91–97.
Google Scholar
[5]
A.J. Brunner, B.R.K. Blackman and P. Davies, A status report on delamination resistance testing of polymer–matrix composites, Eng. Fract. Mech. 75/9 (2008) 2779–2794.
DOI: 10.1016/j.engfracmech.2007.03.012
Google Scholar
[6]
S. Stelzer, A.J. Brunner, A. Argüelles, N. Murphy and G. Pinter, Mode I delamination fatigue crack growth in unidirectional fiber reinforced composites: Development of a standardized test procedure, Comp. Sci. Tech. 72/10 (2012) 1102–1107.
DOI: 10.1016/j.compscitech.2011.11.033
Google Scholar
[7]
A.J. Brunner, I. Paris and G. Pinter, Fatigue propagation test development for polymer-matrix fibre-reinforced laminates, Proc. 12th Int. Conf. Fract. ICF-12, Montreal, paper No. 00371, pp.1-8, (2009).
Google Scholar
[8]
R. Jones, S. Pitt, D. Hui D and A.J. Brunner, Fatigue crack growth in nano-composites, Comp. Struct. 99 (2013) 375–379.
DOI: 10.1016/j.compstruct.2012.09.050
Google Scholar
[9]
ASTM - American Society for Testing and Materials, ASTM D6115: - Standard test method for mode I fatigue delamination growth onset of unidirectional fiber-reinforced polymer matrix composites, (1997).
DOI: 10.1520/d6115-97
Google Scholar
[10]
ASTM - American Society for Testing and Materials, ASTM D5528 - Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites, (2001).
DOI: 10.1520/d5528-01r07e01
Google Scholar
[11]
ISO - International Organization for Standardization, ISO 15024 - Fibre-reinforced plastic composites — Determination of mode I interlaminar fracture toughness, GIC, for unidirectionally reinforced materials, (2001).
DOI: 10.3403/30448273
Google Scholar
[12]
ISO - International Organization for Standardization, ISO 15114 - Fibre-reinforced plastic composites — The determination of the Mode II fracture resistance, GIIC, for unidirectionally reinforced materials using the calibrated end loaded split (C-ELS) test and an effective crack length approach, (2011).
DOI: 10.3403/30215689
Google Scholar
[13]
A.J. Brunner, N. Murphy and G. Pinter, Development of a standardized procedure for the characterization of interlaminar delamination propagation in advanced composites under fatigue mode I loading conditions, Eng. Fract. Mech. 76/18 (2009).
DOI: 10.1016/j.engfracmech.2009.07.014
Google Scholar
[14]
A.J. Brunner, S. Stelzer, G. Pinter and G. Terrasi, Mode II fatigue delamination resistance of advanced fiber-reinforced polymer–matrix laminates: Towards the development of a standardized test procedure, Int. J. Fat. 50 (2013) 57–62.
DOI: 10.1016/j.ijfatigue.2012.02.021
Google Scholar
[15]
ASTM - American Society for Testing and Materials, ASTM E647 - Standard test method for measurement of fatigue crack growth rates, (2013).
Google Scholar
[16]
A.J. Brunner, Experimental aspects of mode I and mode II fracture toughness testing of fibre-reinforced polymer-matrix composites, Com. Meth. Appl. Mech. Eng. 185/2-4 (2000) 161–172.
DOI: 10.1016/s0045-7825(99)00257-1
Google Scholar
[17]
D.J. Nicholls and J.P. Gallagher, Determination of GIC in angle ply composites using a cantilever beam test method, J. Reinf. Plast. Comp. 2/1 (1983) 2–17.
DOI: 10.1177/073168448300200101
Google Scholar
[18]
T.K. O'Brien, Composite interlaminar shear fracture toughness, GIIc: Shear measurement or sheer myth?, in: R.B. Bucinell (Ed. ), Composite Materials: Fatigue and Fracture: ASTM STP 1330, American Society for Testing and Materials, West Conshohocken, 1998, p.3.
DOI: 10.1520/stp13263s
Google Scholar
[19]
T. Kusaka, M. Hojo, Y. Mai, T. Kurokawa, T. Nojima and S. Ochiai, Rate dependence of mode I fracture behaviour in carbon-fibre/epoxy composite laminates, Comp. Sci. Tech. 58 (1998) 591–602.
DOI: 10.1016/s0266-3538(97)00176-0
Google Scholar
[20]
T. Kusaka, M. Hojo, S. Ochiai and T. Kurokawa, Rate-dependent mode II interlaminar fracture behavior of carbon-fiber/epoxy composite laminates, Mat. Sci. Res. Int. 5/2 (1999) 98–103.
DOI: 10.2472/jsms.48.6appendix_98
Google Scholar
[21]
T. Kusaka, T. Kurokawa, M. Hojo and S. Ochiai, Evaluation of mode II interlaminar fracture toughness of composite laminates under impact loading, Key Eng. Mat. 141-143 (1998) 477–500.
DOI: 10.4028/www.scientific.net/kem.141-143.477
Google Scholar
[22]
R.H. Martin and G.B. Murri, Characterization of mode I and mode II delamination growth and thresholds in AS4/PEEK composites, in: S. Garbo (Ed. ) Composite Materials: Testing and Design: ASTM STP 1059, American Society for Testing and Materials, West Conshohocken, 1990, p.251.
DOI: 10.1520/stp24115s
Google Scholar
[23]
A.J. Brunner, Fracture mechanics of polymer composites for aerospace industry, in: P. Irving, C. Soutis (Eds. ) Polymer composites in the aerospace industry, Woodhead Publishing Limited; Cambridge, 2015, 191-230.
DOI: 10.1016/b978-0-85709-523-7.00008-6
Google Scholar
[24]
G.B. Murri, Testing and life prediction for composite rotor hub flexbeams, Int. J. Fat. 28/10 (2006) 1124–1135.
DOI: 10.1016/j.ijfatigue.2006.02.029
Google Scholar
[25]
C. Dahlen and G.S. Springer, Delamination growth in composites under cyclic loads, J. Comp. Mat. 28/8 (1994) 732–781.
DOI: 10.1177/002199839402800803
Google Scholar