Method to Quantify the Surface Roughness of Circular Reinforcing Fibres

Article Preview

Abstract:

The properties of fibre-reinforced composites depend on the interface between the matrix and the fibre. The surface of the fibres plays a key role in the load transmission. In this article, a method based on scanning electron microscopy images of fibre cross sections is introduced to quantify the surface roughness. By utilising an image editing software to get a digital profile of the fibre contour, the arithmetic roughness Ra of a carbon fibre was calculated. The method was tested on a C-fibre with a diameter of 7 microns and compared with the images of an atomic force microscopy (AFM). The method allows a comparison of different types of fibres as well as an investigation regarding the influence of fibre treatments.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

922-927

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.T. Drzal, N. Sugiura, D. Hook, The role of chemical bonding and surface topography in adhesion between carbon fibers and epoxy matrices, J. Compos. Interf. 5 (1997) 337–354.

DOI: 10.1163/156855497x00073

Google Scholar

[2] W. Song, A. Gu, G. Liang, L. Yuan, Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites, J. Applied Surface Sci. 257 (2011) 4069-4074.

DOI: 10.1016/j.apsusc.2010.11.177

Google Scholar

[3] N. Chawla, J.W. Holmes, J.F. Mansfield, Surface roughness characterization of Nicalon™ and HI-Nicalon™ ceramic fibers by atomic force microscopy, J. Materials Characterization. 35 (1995) 199-206.

DOI: 10.1016/1044-5803(95)00103-6

Google Scholar

[4] A. Kafi, M. Huson, C. Creighton, J. Khoo, L. Mazzola, T. Gengenbach, F. Jones, B. Fox, Effect of surface functionality of PAN-based carbon fibres on the mechanical performance of carbon/epoxy composites, J. Comp. Sci. and Tech. 94 (2014) 89-95.

DOI: 10.1016/j.compscitech.2014.01.011

Google Scholar

[5] F. Vautard, P. Fioux, L. Vidal, J. Schultz, M. Nardin, B. Defoort, Influence of the carbon fiber surface properties on interfacial adhesion in carbon fiber–acrylate composites cured by electron beam, J. Composites Part A: Applied Sci. and Manufacturing 42 (2011).

DOI: 10.1016/j.compositesa.2011.03.015

Google Scholar

[6] M. Allahkarami, J. C. Hanan, H. A. Bale, Regeneration of surface roughness by the Langevin equation using stochastic analysis on AFM image of a carbon fiber, J. Applied Surface Sci. 257 (2010) 857-860.

DOI: 10.1016/j.apsusc.2010.07.081

Google Scholar

[7] DIN EN ISO 4287/A2: 2013-04 - Geometrische Produktspezifikation (GPS) – Oberflächenbeschaffenheit: Tastschnittverfahren - Benennungen, Definitionen und Kenngrößen der Oberflächenbeschaffenheit, Beuth Verlag, 22. 04. (2013).

DOI: 10.31030/1699310

Google Scholar

[8] Information on http: /www. tohotenax-eu. com/fileadmin/tohotenax/downloads/Produkte/Technische%20 Datenblaetter/HTA_dt_2011-04. pdf.

Google Scholar

[9] Information on http: /imagej. nih. gov/ij.

Google Scholar

[10] V. Pratt, Direct least-squares fitting of algebraic surfaces, J. Computer Graphics 21 (1987), 145-152.

DOI: 10.1145/37402.37420

Google Scholar

[11] Information on http: /www. veeco. com/pdfs/library/SPM_Guide_0829_05_166. pdf.

Google Scholar