[1]
A.Z. Sadek, W. Wlodarski, K. Kalantar-Zadeh, C. Baker, and R.B. Kaner, Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors, Science Direct, Sensors and Actuators A. 139(2007), 53-57.
DOI: 10.1016/j.sna.2006.11.033
Google Scholar
[2]
N.G. Deshpande, Y.G. Gudage, R. S. Devan, Y. R. Ma, Y. P. Lee, R. Sharma, Room-temperature gas sensing studies of polyaniline thin films deposited on different substrates, Smart Mater. Struct. 18 (2009) 095010.
DOI: 10.1088/0964-1726/18/9/095010
Google Scholar
[3]
J. Stejskal, I. Sapurina, J. Prokes, and J. Zemek, In-situ polymerized polyaniline films, Synthetic Metals, Synthetic Metals 105 (1999), 195-202.
DOI: 10.1016/s0379-6779(99)00105-8
Google Scholar
[4]
A. Riede, M. Helmstedt, V. Riede, and J. Stejskal, Polyaniline dispersion 7. Dynamic light scattering study of particle formation, Colloid Polym Sci. 275 (1997), 814-820.
DOI: 10.1007/s003960050153
Google Scholar
[5]
B. Lee, J. Kim, F. Fang, H. Choi, and J. F. Feller, Rectangular-shaped polyaniline tubes covered with nanorods and their electrorheology, Macromol. Chem. Phys (2011), DOI: 10. 1002/macp. 201100306.
DOI: 10.1002/macp.201100306
Google Scholar
[6]
N. Blinova, J. Stejskal, M. Trchova, I. Sapurina, and G. Ciric-Marjanovic, The oxidation of aniline with silver nitrate to polyaniline-silver composites, Polymer, no. 50 (2008), pp.50-56.
DOI: 10.1016/j.polymer.2008.10.040
Google Scholar
[7]
X. Wang, Y. Li, Y. Zhao, J. Liu, S. Tang, and W. Feng, Synthesis of PANI nanostructures with various morphologies from fibers to micromats to disks doped with salicylic acid, Synthetic Metals 160 (2010) 2008-(2014).
DOI: 10.1016/j.synthmet.2010.07.030
Google Scholar
[8]
J. Stejskal and I. Sapurina, Thin films and colloidal dispersions (IUPAC Technical Report), Pure Appl. Chem. 77 (2005) 815-826.
DOI: 10.1351/pac200577050815
Google Scholar
[9]
A. Riede, M. Helmstedt, and V. Riede, In situ polymerized polyaniline films. 2. Dispersion polymerization of aniline in the presence of colloidal silica, American Chemical Society, Langmuir 16 (2000) 6240-6244.
DOI: 10.1021/la991414c
Google Scholar
[10]
I. Sapurina, A. Riede, and J. Stejskal, In-situ polymerized polyaniline films 3. Film formation, Synthetic Metals 123 (2001) 503-507.
DOI: 10.1016/s0379-6779(01)00349-6
Google Scholar
[11]
I. Oladeji and L. Chow, Synthesis and processing of CdS/ZnS multilayer films for solar cell application, Thin Solid Films 474 (2004) 77-83.
DOI: 10.1016/j.tsf.2004.08.114
Google Scholar
[12]
H. Soetedjo and G. S Prabowo, Photoconductive phenomenon observed from ZnS layer deposition for a potential of IR Sensor application, Sensors & Transducers Journal 123 (2010) 100-105.
Google Scholar
[13]
M. Stupca, O. Nayfeh, T. Hoang,M. H. Nayfeh, B. Alhreish, J. Boparai, A. AlDwayyan, A. AlSalhi, Silicon nanoparticle-ZnS nanophosphors for ultraviolet-based white light emitting diode, Journal of Applied Physics 112 (2012) 074313.
DOI: 10.1063/1.4754449
Google Scholar
[14]
K. Nagamani, P. Prathap, Y. Lingappa, R. W. Miles, and K. T. R. Reddy, Properties of Al-doped ZnS films grown by chemical bath deposition, Physics Procedia 25 (2012) 137-142.
DOI: 10.1016/j.phpro.2012.03.062
Google Scholar
[15]
R. S. Meshram and R. M. Thombre, Structural and optical properties of ZnS thin films deposited by spray pyrolysis technique, Proc. 2012 ICBEST Conference, (2012) 22-25.
Google Scholar
[16]
C. Lee, Y. Nakamura, H. Nakamura, M. Uehara, and H. Maeda, Controlling the structure and morphology of ZnS nanoparticles by manipulating the temperature profile, Anyagtudomany Materials Science (2011) 52-56.
DOI: 10.14382/epitoanyag-jsbcm.2011.9
Google Scholar
[17]
A. Goudarzi, G. Aval, R. Sahraei, and H. Ahmadpoor, Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells, Thin Solid Films 516 (2007) 4953-4957.
DOI: 10.1016/j.tsf.2007.09.051
Google Scholar
[18]
M. Shinde, P. Ahirrao, and R. Patil, (2011), Structural, optical, and electrical properties of nanocrystalline ZnS thin films deposited by novel chemical route, Archives of Applied Science Research 3 (2011) 311-317.
Google Scholar
[19]
E. Ernits, K. Muska, et al. Anion effect of zinc source on chemically deposited ZnS(O, OH) films, Advances in Materials Science and Engineering, ( 2009), DOI: 10. 1155/2009/372708.
DOI: 10.1155/2009/372708
Google Scholar
[20]
J. Stejskal, I. Sapurina, and M. Trchova, Polyaniline nanostructures and the role of aniline oligomers in their formation, Progress in Polymer Science 35 (2010) 1420-1481.
DOI: 10.1016/j.progpolymsci.2010.07.006
Google Scholar
[21]
M. Dhanam and B. Kavitha, Influence of tea (complexing agent) on the structural properties of CBD ZnS thin films, Chalcogenide Letters 6 (2009) 299-307.
Google Scholar
[22]
M. Trchova and J. Stejskal, Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report), Pure Appl. Chem. 83 (2011) 1803-1817.
DOI: 10.1351/pac-rep-10-02-01
Google Scholar
[23]
H. C. Pant, M. K. Patra, S. C. Negi, A. Bhatia, S. R. Vadera, N. Kumar, Studies on conductivity and dielectric properties of polyaniline–zinc sulphide composites, Bull. Mater. Sci. 29 (2006) 379–384.
DOI: 10.1007/bf02704139
Google Scholar
[24]
I. Sapurina, A. Y. Osadchev, B. Z. Volchek, M. Trchova, A. Riede, J. Stejskal, In-situ polymerized polyaniline films 5. Brush-like chain ordering, Synthetic Metals 129 (2002) 29-37.
DOI: 10.1016/s0379-6779(02)00036-x
Google Scholar
[25]
K. Dutta, S. Manna, and S. K. De, Optical and electrical characterizations of ZnS nanoparticles embedded in conducting polymer, Synthetic Metals 159 (2009) 315-319.
DOI: 10.1016/j.synthmet.2008.09.003
Google Scholar
[26]
D. Poelman and P. F. Smet, Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review, J. Phys. D Appl. Phys. 36 (2003) 1850-1857.
DOI: 10.1088/0022-3727/36/15/316
Google Scholar
[27]
P. Liu, W. Liu, and Q. Xue, In situ chemical oxidative graft polymerization of aniline from silica nanoparticles, Materials Chemistry and Physics 87 (2004) 109–113.
DOI: 10.1016/j.matchemphys.2004.05.001
Google Scholar