Optical Property Enhancement of Silica-Modified Polyaniline Grown on Glass Substrate via Incorporation of Zinc Sulfide into the Polymer Matrix

Article Preview

Abstract:

Growth of zinc sulfide (ZnS) nanostructures on silica modified-polyaniline (SM-PAni) with polymerization time-dependent was prepared using chemical bath deposition (CBD) technique. The grown samples were characterized by scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy. SEM images revealed some voids in the nanocomposites. The average diameter of the grown ZnS nanospheres did not significantly change by changing the growth time of the polyaniline. FTIR spectra and UV-Vis absorption spectra revealed the partial transformation of emeraldine salt polyaniline into emeraldine base PAni due to the deprotonation triggered during CBD for the synthesis of ZnS nanostructures. Furthermore, UV-Vis absorption spectra reveal synergistic effect of the absorption bands of both polyaniline and ZnS nanostructures. This synergistic effect results to the enhancement in the optical property of the fabricated nanocomposite which is an essential property in optoelectronics and solar cell application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

192-199

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.Z. Sadek, W. Wlodarski, K. Kalantar-Zadeh, C. Baker, and R.B. Kaner, Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors, Science Direct, Sensors and Actuators A. 139(2007), 53-57.

DOI: 10.1016/j.sna.2006.11.033

Google Scholar

[2] N.G. Deshpande, Y.G. Gudage, R. S. Devan, Y. R. Ma, Y. P. Lee, R. Sharma, Room-temperature gas sensing studies of polyaniline thin films deposited on different substrates, Smart Mater. Struct. 18 (2009) 095010.

DOI: 10.1088/0964-1726/18/9/095010

Google Scholar

[3] J. Stejskal, I. Sapurina, J. Prokes, and J. Zemek, In-situ polymerized polyaniline films, Synthetic Metals, Synthetic Metals 105 (1999), 195-202.

DOI: 10.1016/s0379-6779(99)00105-8

Google Scholar

[4] A. Riede, M. Helmstedt, V. Riede, and J. Stejskal, Polyaniline dispersion 7. Dynamic light scattering study of particle formation, Colloid Polym Sci. 275 (1997), 814-820.

DOI: 10.1007/s003960050153

Google Scholar

[5] B. Lee, J. Kim, F. Fang, H. Choi, and J. F. Feller, Rectangular-shaped polyaniline tubes covered with nanorods and their electrorheology, Macromol. Chem. Phys (2011), DOI: 10. 1002/macp. 201100306.

DOI: 10.1002/macp.201100306

Google Scholar

[6] N. Blinova, J. Stejskal, M. Trchova, I. Sapurina, and G. Ciric-Marjanovic, The oxidation of aniline with silver nitrate to polyaniline-silver composites, Polymer, no. 50 (2008), pp.50-56.

DOI: 10.1016/j.polymer.2008.10.040

Google Scholar

[7] X. Wang, Y. Li, Y. Zhao, J. Liu, S. Tang, and W. Feng, Synthesis of PANI nanostructures with various morphologies from fibers to micromats to disks doped with salicylic acid, Synthetic Metals 160 (2010) 2008-(2014).

DOI: 10.1016/j.synthmet.2010.07.030

Google Scholar

[8] J. Stejskal and I. Sapurina, Thin films and colloidal dispersions (IUPAC Technical Report), Pure Appl. Chem. 77 (2005) 815-826.

DOI: 10.1351/pac200577050815

Google Scholar

[9] A. Riede, M. Helmstedt, and V. Riede, In situ polymerized polyaniline films. 2. Dispersion polymerization of aniline in the presence of colloidal silica, American Chemical Society, Langmuir 16 (2000) 6240-6244.

DOI: 10.1021/la991414c

Google Scholar

[10] I. Sapurina, A. Riede, and J. Stejskal, In-situ polymerized polyaniline films 3. Film formation, Synthetic Metals 123 (2001) 503-507.

DOI: 10.1016/s0379-6779(01)00349-6

Google Scholar

[11] I. Oladeji and L. Chow, Synthesis and processing of CdS/ZnS multilayer films for solar cell application, Thin Solid Films 474 (2004) 77-83.

DOI: 10.1016/j.tsf.2004.08.114

Google Scholar

[12] H. Soetedjo and G. S Prabowo, Photoconductive phenomenon observed from ZnS layer deposition for a potential of IR Sensor application, Sensors & Transducers Journal 123 (2010) 100-105.

Google Scholar

[13] M. Stupca, O. Nayfeh, T. Hoang,M. H. Nayfeh, B. Alhreish, J. Boparai, A. AlDwayyan, A. AlSalhi, Silicon nanoparticle-ZnS nanophosphors for ultraviolet-based white light emitting diode, Journal of Applied Physics 112 (2012) 074313.

DOI: 10.1063/1.4754449

Google Scholar

[14] K. Nagamani, P. Prathap, Y. Lingappa, R. W. Miles, and K. T. R. Reddy, Properties of Al-doped ZnS films grown by chemical bath deposition, Physics Procedia 25 (2012) 137-142.

DOI: 10.1016/j.phpro.2012.03.062

Google Scholar

[15] R. S. Meshram and R. M. Thombre, Structural and optical properties of ZnS thin films deposited by spray pyrolysis technique, Proc. 2012 ICBEST Conference, (2012) 22-25.

Google Scholar

[16] C. Lee, Y. Nakamura, H. Nakamura, M. Uehara, and H. Maeda, Controlling the structure and morphology of ZnS nanoparticles by manipulating the temperature profile, Anyagtudomany Materials Science (2011) 52-56.

DOI: 10.14382/epitoanyag-jsbcm.2011.9

Google Scholar

[17] A. Goudarzi, G. Aval, R. Sahraei, and H. Ahmadpoor, Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells, Thin Solid Films 516 (2007) 4953-4957.

DOI: 10.1016/j.tsf.2007.09.051

Google Scholar

[18] M. Shinde, P. Ahirrao, and R. Patil, (2011), Structural, optical, and electrical properties of nanocrystalline ZnS thin films deposited by novel chemical route, Archives of Applied Science Research 3 (2011) 311-317.

Google Scholar

[19] E. Ernits, K. Muska, et al. Anion effect of zinc source on chemically deposited ZnS(O, OH) films, Advances in Materials Science and Engineering, ( 2009), DOI: 10. 1155/2009/372708.

DOI: 10.1155/2009/372708

Google Scholar

[20] J. Stejskal, I. Sapurina, and M. Trchova, Polyaniline nanostructures and the role of aniline oligomers in their formation, Progress in Polymer Science 35 (2010) 1420-1481.

DOI: 10.1016/j.progpolymsci.2010.07.006

Google Scholar

[21] M. Dhanam and B. Kavitha, Influence of tea (complexing agent) on the structural properties of CBD ZnS thin films, Chalcogenide Letters 6 (2009) 299-307.

Google Scholar

[22] M. Trchova and J. Stejskal, Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report), Pure Appl. Chem. 83 (2011) 1803-1817.

DOI: 10.1351/pac-rep-10-02-01

Google Scholar

[23] H. C. Pant, M. K. Patra, S. C. Negi, A. Bhatia, S. R. Vadera, N. Kumar, Studies on conductivity and dielectric properties of polyaniline–zinc sulphide composites, Bull. Mater. Sci. 29 (2006) 379–384.

DOI: 10.1007/bf02704139

Google Scholar

[24] I. Sapurina, A. Y. Osadchev, B. Z. Volchek, M. Trchova, A. Riede, J. Stejskal, In-situ polymerized polyaniline films 5. Brush-like chain ordering, Synthetic Metals 129 (2002) 29-37.

DOI: 10.1016/s0379-6779(02)00036-x

Google Scholar

[25] K. Dutta, S. Manna, and S. K. De, Optical and electrical characterizations of ZnS nanoparticles embedded in conducting polymer, Synthetic Metals 159 (2009) 315-319.

DOI: 10.1016/j.synthmet.2008.09.003

Google Scholar

[26] D. Poelman and P. F. Smet, Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review, J. Phys. D Appl. Phys. 36 (2003) 1850-1857.

DOI: 10.1088/0022-3727/36/15/316

Google Scholar

[27] P. Liu, W. Liu, and Q. Xue, In situ chemical oxidative graft polymerization of aniline from silica nanoparticles, Materials Chemistry and Physics 87 (2004) 109–113.

DOI: 10.1016/j.matchemphys.2004.05.001

Google Scholar