Kinetics of Titanium Metal Injection Moulding Feedstock Thermal Debinding

Article Preview

Abstract:

Controlled thermogravimetric pyrolysis of a metal injection moulding (MIM) feedstock was performed in order to characterize the associated thermal debinding processing in an inert atmosphere. The feedstock was formulated using Ti-6Al-4V metal powders and a newly developed MIM binder system. The catalytic effect of the metal powder on the decomposition of the binder components in the MIM feedstock is observed. The thermogravimetric analysis also reveals that thermal debinding is characterized by a multistage degradation behaviour of the binder system. In order to determine the kinetic parameters of the degradation step Ozawa and Ozawa-Flynn-Wall methods were applied. Activation energies with the degree of thermal debinding are deduced and discussed in terms of the decomposition of the binder components in the MIM feedstock.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 828-829)

Pages:

158-164

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. M. German, Progress in Titanium Metal Powder Injection Molding, Materials (Basel). 6(8) (2013) 3614–3662.

Google Scholar

[2] G. Wen, P. Cao, B. Gabbitas, D. Zhang, and N. Edmonds, Development and Design of Binder Systems for Titanium Metal Injection Molding: An Overview, Metall. Mater. Trans. A, 44(3) (2013) 1530–1547.

DOI: 10.1007/s11661-012-1485-x

Google Scholar

[3] H. Ye, X. Y. Liu, and H. Hong, Fabrication of metal matrix composites by metal injection molding—A review, J. Mater. Process. Technol. 200(1–3) (2008) 12–24.

DOI: 10.1016/j.jmatprotec.2007.10.066

Google Scholar

[4] A. Sidambe, Biocompatibility of Advanced Manufactured Titanium Implants—A Review, Materials (Basel) 7(12) 2014 8168–8188.

DOI: 10.3390/ma7128168

Google Scholar

[5] A. T. Sidambe, F. Derguti, and I. Todd, Metal Injection Moulding of Low Interstitial Titanium, Key Engineering Materials 520 (2012) 145–152.

DOI: 10.4028/www.scientific.net/kem.520.145

Google Scholar

[6] M. Porter, Effects of Binder Systems for Metal Injection Moulding, Lulea University of Technology, (2003).

Google Scholar

[7] Y. Li, L. Li, and K. A. Khalil, Effect of powder loading on metal injection molding stainless steels, J. Mater. Process. Technol. 183(2–3) (2007) 432–439.

DOI: 10.1016/j.jmatprotec.2006.10.039

Google Scholar

[8] R. Machaka, M. N. Seerane, and H. K. Chikwanda, Binder Development for Metal Injection Molding: A CSIR Perspective, Adv. Powder Metall. Part. Mater. 2014 (2014) 4–43.

Google Scholar

[9] G. Aggarwal, S. J. Park, I. Smid, and R. M. German, Master decomposition curve for binders used in powder injection molding, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 38(3) (2007) 606–614.

DOI: 10.1007/s11661-007-9102-0

Google Scholar

[10] C. B. DiAntonio, K. G. Ewsuk, and D. Bencoe, Extension of master sintering curve theory to organic decomposition, J. Am. Ceram. Soc. 88(10) (2005) 2722–2728.

DOI: 10.1111/j.1551-2916.2005.00517.x

Google Scholar

[11] S. Das, Study of decomposition behaviour of binders and the effect of binder type on strength and density of alumina samples, BTech Thesis, Department of Ceramic Engineering, National Institute of Technology Rourkela, (2011).

Google Scholar

[12] M. N. Seerane, H. K. Chikwanda, W. Focke, and R. Machaka, Investigating the Powder loading of gas atomised Ti6Al4V powder using an in-house, binder for MIM, in Advanced Metals Initiative: Precious Metals 2013, (2013).

Google Scholar

[13] J. H. Flynn and L. A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data, J. Polym. Sci. Part B Polym. Lett. 4(5) (1966) 323–328.

DOI: 10.1002/pol.1966.110040504

Google Scholar

[14] T. Ozawa, Thermal analysis - Review and prospect, Thermochimica Acta 355(1–2) (2000) 35–42.

DOI: 10.1016/s0040-6031(00)00435-4

Google Scholar

[15] J. Hidalgo, J. P. Fernández-Blázquez, A. Jiménez-Morales, T. Barriere, J. C. Gelin, and J. M. Torralba, Effect of the particle size and solids volume fraction on the thermal degradation behaviour of Invar 36 feedstocks, Polym. Degrad. Stab. 98(12) (2013).

DOI: 10.1016/j.polymdegradstab.2013.09.015

Google Scholar